
iv

MAINVIEW® AutoOPERATOR ™

Advanced Automation Guide
for REXX EXECs

Version 6.2

March 15, 2002

marks
rp. All

t
, as
Copyright © 2002 BMC Software, Inc., as an unpublished work. All rights reserved.

BMC Software, the BMC Software logos, and all other BMC Software product or service names are registered trade
or trademarks of BMC Software, Inc. IBM and DB2 are registered trademarks of International Business Machines Co
other registered trademarks or trademarks belong to their respective companies.

THE USE AND CONTENTS OF THIS DOCUMENTATION ARE GOVERNED BY THE SOFTWARE LICENSE
AGREEMENT ENCLOSED AT THE BACK OF THIS DOCUMENTATION.

Restricted Rights Legend

U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED–RIGHTS RESERVED UNDER THE COPYRIGHT
LAWS OF THE UNITED STATES. Use, duplication, or disclosure by the U.S. Government is subject to restrictions se
forth in FAR Section 52.227-14 Alt. III (g)(3), FAR Section 52.227-19, DFARS 252.227-7014 (b), or DFARS 227.7202
amended from time to time. Send any contract notices to Contractor/Manufacturer:

BMC Software, Inc.
2101 CityWest Blvd.
Houston TX 77042-2827
USA
C

Contacting BMC Software

You can access the BMC Software Web site athttp://www.bmc.com. From this Web site, you can obtain general
information about the company, its products, special events, and career opportunities. For a complete list of all BM
Software offices and locations, go to http://www.bmc.com/corporate/offices.html.

USA and Canada Outside USA and Canada

Address BMC Software, Inc.
2101 CityWest Blvd.
Houston TX 77042-2827

Telephone

Fax

(01) 713 918 8800

(01) 713 918 8000

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

http://www.bmc.com/corporate/offices.html
http://www.bmc.com

er

 support

e the
rmation
e

egin

TF
Customer Support

You can obtain technical support by using the Support page on the BMC Software Web site or by contacting Custom
Support by telephone or e-mail. To expedite your inquiry, please see “Before Contacting BMC Software,” below.

Support Web Site

You can obtain technical support from BMC Software 24 hours a day, seven days a week by accessing the technical
Web site athttp://www.bmc.com/support.html. From this site, you can

• read overviews about support services and programs that BMC Software offers
• find the most current information about BMC Software products
• search a database for problems similar to yours and possible solutions
• order or download product documentation
• report a problem or ask a question
• subscribe to receive e-mail notices when new product versions are released
• find worldwide BMC Software support center locations and contact information, including e-mail addresses, fax

numbers, and telephone numbers

Support via Telephone or E-mail

In the USA and Canada, if you need technical support and do not have access to the Web, call 800 537 1813. Outsid
USA and Canada, please contact your local support center for assistance. To find telephone and e-mail contact info
for the BMC Software support center that services your location, refer to the Contact Customer Support section of th
Support page on the BMC Software Web site atwww.bmc.com/support.html.

Before Contacting BMC Software

Before you contact BMC Software, have the following information available so that a technical support analyst can b
working on your problem immediately:

• product information

— product name
— product version (release number)
— license number and password (trial or permanent)

• operating-system and environment information

— machine type
— operating system type, version, and service pack or program temporary fix (PTF)
— system hardware configuration
— serial numbers
— related software (database, application, and communication) including type, version, and service pack or P

• sequence of events leading to the problem

• commands and options that you used

• messages received (and the time and date that you received them)

— product error messages
— messages from the operating system, such asfile system full
— messages from related software
iii

http://www.bmc.com/support.html

iv MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 . . . 1

 . . . 3
 . . . 4
. . . . 6
 . . .
 . . 10

 . . 13
. . . 13
. . . 14
. . . 14
 . . 15
. . 16
 . . 19
. . 20
. . . 21

. . . 23
 . . . 24
. .
 . . 27
 . . 28
. . 28
 . . 29
 . .
. . . . 29

. . . 30
. . 31
 . .
. . . . 31
 . 33
. . . 34
 . 34
. . . 35
 . . 36
 . .
. . . . 36
 .
. . . 37
 . . 38
 . .
. . . . 38
 .
. . . 41
 . . 42
 . .
Contents

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your
Environment .

Overview . 1
Choosing the EXEC Language: REXX or CLIST .
Invoking AutoOPERATOR EXECs .
Passing Information to REXX EXECs.
Controlling EXEC Execution .9
Using Variables in AutoOPERATOR EXECs .

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR
REXX EXECs .

Using Expressions and Operators in REXX EXECs .
Using Control Statements in REXX EXECs .
Using Assignment Statements in REXX EXECs.
Using Conditional Statements in REXX EXECs .
Using Built-In Functions in REXX EXECs .
Using TSO/E Functions for REXX EXECs .
Using TSO/E REXX Commands in REXX EXECs .
Restrictions in REXX EXECs .

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR 23
Understanding the Four Components of a REXX EXEC.

Defining the Language .
Passing Data . 24
Documenting REXX EXECs .
Writing the Logic Section .

Describing AutoOPERATOR REXX EXECs .
Rule-Initiated REXX EXECs .

Potential Use . 29
Parameters Passed to the EXEC .
Example. 30
Describing the Example .

ALERT-Initiated REXX EXECs .
Potential Use . 31
Parameters Passed to the EXEC .
Example 1: ALERT-Initiated EXEC without Optional Parameters
Describing the Example .
Example 2: ALERT-Initiated EXEC with Optional Parameters
Describing the Example .

User-Initiated REXX EXECs .
Potential Use . 36
Parameters Passed to the EXEC .
Example . 36
Describing the Example .

Time-Initiated REXX EXECs .
Potential Use . 38
Parameters Passed to the EXEC .
Example . 40
Describing the Example .

EXEC-Initiated REXX EXECs .
Potential Use . 42
 Contents v

 . . . 42
.
. . . 43
. . 44
. .
 . . . 44
.
. . . 45
 . 46
. .
 . . . 46
.

9

. . .

. . 54

. . 61
. . 61
 . . 61
. . . 63
 . . 6
 . 64
. . . 6
 . . 6
. . . 6
.
. . . 67
.
 . . 69
.
. . . 69
.
. . 70
.
. . . 70
.
71

.
. . . 71
.

73
. .
. . . 73
 . . 73
 . . 74
 . 75
78
. . .
 . . 80
. . 80
 . . 81
. . 81
Parameters Passed to the EXEC .
Example . 42
Describing the Example .

Externally Initiated REXX EXECs .
Potential Use . . 44
Parameters Passed to the EXEC .
Example . 45
Describing the Example .

End-of-Memory–Initiated REXX EXEC .
Potential Use . . 46
Parameters Passed to the EXEC .
Example . . . 47

Chapter 4. Using Variables in REXX EXECs . 4
Overview . 49
Using a TSO Variable Pool . 53

TSO Variables Supplied by AutoOPERATOR.
TSO Modifiable Control Variables.
TSO Non-Modifiable Control Variables.

Using LOCAL Variables and Pools. .
Using SHARED Variables and Pools .

Serializing Variables. .3
AutoOPERATOR-Supplied SHARED Variables .

Using the PROFILE Pool . 6
Serializing Variables. .6

Saving Data in a Variable Pool . 7
Potential Use. 67
Describing the Example .
Example . . . 68

Retrieving Data from a Variable Pool .
Potential Use. 69
Describing the Example .
Example . . . 69

Sharing Variables while Multi-Threading EXECs .
Potential Use. 70
Describing the Example .
Example . . . 70

Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages
Potential Use. 71
Describing the Example .
Example . . . 71

Chapter 5. Controlling EXEC Execution .
Scheduling EXECs . . 73

Defining Threads .
Scheduling EXECs to the Normal Queue .
Scheduling EXECs to the Priority Queue .
Multi-Threading EXECs to the Normal or Priority Queue .

Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)
Implementing an EXEC. 79
Controlling EXEC Execution .

Setting Time and CPU Limits for EXECs .
Displaying EXEC Execution Status .
Cancelling, Stopping, and Starting EXEC Execution .
vi MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

. . 82

. . 83
 . . 84

. . . . 88
 .
 . . 91
. . 92
93
. . 95
 . . . 96
 . . . 98
 . . 98

100
. 101
. 102
 . 103
. . 103
 . 104
 . 105

7
107
108
110

. .

 . . 114

 . . 115
 . . 115
 . . 115
. . 1
 . 116
. . 117
 . 119
 . . 121
. . 122
 . 123
 . . 124
. . 124
 . . 125
. . 125
 . . 125
 . . 1
 . .
 . . 1
. . 126
Analyzing EXEC Performance Using the EXEC Management Application.
Using the SORT Command in the EXEC-Management Application

Writing EXECs that Display CPU Consumption. .

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs 87
Overview . 87
Scheduling Messages and EXECs Across BBI-SS PASs.

Examples . 89
Determining the Origin of a Command or EXEC .

Example - Determining the Origin of a User-Initiated EXEC
Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX

Determining Return Codes from IMFSUBEX .
Submission from a Job Step .
Submission from a TSO Session. .
Submission from within Another Program .

Testing EXECs . 99
Testing EXECs with IMFEXEC CNTL NOCMD Statements .
Testing EXEC with REXX Statement TRACE R .
Testing EXECs with SHARED Variables .
Testing EXECs without Issuing WTOs .

REXX EXEC Considerations.
Minimizing EXEC Processing Time .

Using VLF to Improve Performance. .

Chapter 7. Accessing DB2 from AutoOPERATOR . 10
Access DB2 from REXX EXECs with RxD2/LINK .
RxD2/LINK Common Functions for REXX EXECs .
RxD2/LINK Special Functions for REXX EXECs .

Chapter 8. Interacting with VTAM-Applications with OSPI . 113
Overview . 113
When to Use OSPI . . 114
How to Use OSPI .. . 114
Customization Required to Use OSPI .
OSPI Sessions . 115

Establishing a Session .
Exchanging Data .
Terminating a Session .

OSPI Scripting Application . 16
Accessing the OSPI Scripting Application .
OSPI Script Development Panel .
Interacting with the Application .
Receive Complete Detection .
Retrieving Screen Data into Variables.
Application Termination .

Customizing OSPI EXECs .
OSPI Control Variables .
Disconnect/Reconnect Feature .
Establishing Multiple Sessions .
Using Passwords in OSPI EXECs. .

OSPI Debugging Facilities .26
Return Codes .126
Error Messages .26
OSPI Control Variables .
 Contents vii

. . 126
. . 127

9

. . 13
 . 130
. .
. 131
. 131
133
. 133
. . 135
 . . 136
. . 136
 . . 136
. . 136
 . 1
. 146
 . 152
. 154
. 154

. 16
 . 16
 . 167
 .
 .
 .
 .
. 18
. 18
. 1
. 18

 . 189
. 191
 . . 192
. . 192
. . 192
. 193
 . 1
. 1

 .
OSPISNAP .
OSPI Session Termination Panel .

Chapter 9. Performing Automation Using AOAnywhere. 12
Overview . 129

Sysplex Support . 0
Why Use AOAnywhere .
Installation Requirements . 130
API Implementation under REXX and CLIST .

Differences between IMFEXEC and AOEXEC Parameter Syntax
Implementing the AOAnywhere Batch Interface: AOSUBX .

Why Use AOSUBX .
AOEXEC Commands .
General Coding Conventions. .

Using Variable Names .
Reading Return Codes .
Understanding Command Statement Syntax .

AOEXEC ALERT .37
Return Codes for FUNCTION Keywords .
TSO Variables Returned from the READQ Parameter .
TSO Variables Returned from COUNT .
TSO Variables Returned from LISTQ .

AOEXEC MSG .. 161
AOEXEC NOTIFY . 3
AOEXEC SELECT .5
AOEXEC SYSINFO .
AOEXEC VDEL .171
AOEXEC VGET .174
AOEXEC VLST .176
AOEXEC VPUT .179
AOEXEC VDELL . 1
AOEXEC VGETL . 3
AOEXEC VLSTL . 85
AOEXEC VPUTL . 7

Chapter 10. Accessing Array Data with AutoOPERATOR EXECs 189
Overview . 189

When Are Arrays Useful .
IMFEXEC ARRAY Commands .
General Coding Conventions. .

Using Variable Names .
Reading Condition Codes.

ARRAY CONNECT .
ARRAY CREATE .95
ARRAY DELETE . 97
ARRAY DISC . 198
ARRAY FIND . 200
ARRAY GET. 202
ARRAY INFO . 203
ARRAY INSERT. .205
ARRAY LIST . 206
ARRAY PUT . 207
ARRAY SAVE. 208
ARRAY SET . 209
viii MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 . 21

15

215
215
217
 . . 220
. . 220
 . . 220
. 221
223
225
. 227
. 228
. 230
.

7
 . . 239
 . 239
. . 239
. . 239
 . . 240

 . 249
. . 251
 . 252
 . 252

 . . 261
. . . 263
.
 . 266
 . 267
 . 273
. . 27
. . 27
 . 276
. . 277
. . 27
 . 279
 . . 2
 . 282
 . 283
 . . 2
. . 286
 . 287
 .
 . 29
. . 292
ARRAY SETVIEW .0
ARRAY SORT . 212

Chapter 11. Using the MAINVIEW API . 2
Overview . 215

What Is the MAINVIEW API. .
Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS.
Using the IMFEXEC MAINVIEW Commands .

General Coding Conventions .
Using Variable Names.
Reading Condition Codes .

MAINVIEW CONNECT .
MAINVIEW CONTEXT .
MAINVIEW GETDATA .
MAINVIEW RELEASE .
MAINVIEW TRACE.
MAINVIEW VIEW .
Sample Program . . . 232

Chapter 12. Using the IMFEXEC Statements. 23
General Coding Conventions .

REXX Coding .
Using Quotation Marks .
Using Variable Names .
Reading Condition Codes .

ALERT . 241
FUNCTION Keywords .
TSO Variables Returned from the READQ Parameter .
TSO Variables Returned from COUNT .
TSO Variables Returned from LISTQ .

BKPT . 259
CHAP . 260
CICS . 261

Condition Codes .
CICS Command Parameters.
CICS ACQUIRE. . 265

CICS ALLOC .
CICS ALTER .
CICS ALTERVS .
CICS CEMT . 4
CICS CHAP . 5
CICS CICSKEY .
CICS CLOSE .
CICS CONN . 8
CICS DISABLE .
CICS DROP. .81
CICS DUMPDB .
CICS ENABLE .
CICS FREE .85
CICS INSERVE .
CICS ISOLATE. .
CICS KILL .288
CICS LOAD .1
CICS NEWCOPY .
 Contents ix

. . 29
 . 294
. . 295
 . 297
 . 299
 . 300
. . 301
 . 302
 . 303

. 306
 . 307
310

 . 315
 . 317

329
. 331

 . . 349

. . 353

. . 354

. . 365

. 366
 . 367
 . 368
CICS OPEN . 3
CICS OUTSERVE .
CICS PURGE .
CICS QUERY. .
CICS RECOVERDB .
CICS RELEASE. .
CICS SPURGE.
CICS STARTDB. .
CICS STOPDB. .

CICSTRAN . 304
CMD . 305

CMD (Issue BBI Command without Response) .
CMD (Issue BBI Command with Response) .
CMD (MVS Version with Response through X-MCS Consoles)
CMD (Issue IMS Command without Response) .
CMD (Issue IMS Command with Response) .

CNTL. 321
DOM . 323
EXIT . 324
HB . 325
IMFC . 326
IMFC SET PRG=CALLX|ALL .
IMFC SET REQ=CALLX.
IMSTRAN . 333
JES3CMD . 334
JESALLOC . 335
JESSUBM . 336
LOGOFF . 338
LOGON . 339
MSG. 341
NOTIFY. 342
POST . 343
RECEIVE . 345
RES . 346
SCAN. 348

Using Parameters .
SELECT. 351

Using Other Programming Languages .
Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YES)

 and User Written Programs .
SEND. 355
SESSINF . 357
SETTGT . 358
SHARE . 359
STDTIME . 361
SUBMIT . 362
TAILOR . 363

Condition Codes .
IMFEXEC TAILOR Processing.
Variable Substitution .
Examples of Variable Substitution .

TRANSMIT. 375
TYPE . 377
VCKP. 379
x MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 . 411
 . 411
 . 412

. . 413
 . 413
. . 415
. 415
 . 416
 . 416
. 416
. . 417
 . . 421
 . . 423
 . 424
. . 426
 . 428
. . . 430

 .
 . 432
 . . 433
. . 434
 . 434
 . 435
 . . 436
 . 436
. . 437
437

. . 439
. . 441
 . 442
 . 443
. 444
 . 445
VDCL . 380
VDEL . 382
VDELL. 385
VDEQ. 387
VENQ. 388
VGET . 390
VGETL . 393
VLST . 394
VLSTL . 396
VPUT . 398
VPUTL . 401
WAIT . 403
WAITLIST . 404
WTO . 406
WTOR . 409

Chapter 13. Testing and Debugging EXECs Interactively . 411
Introduction . 411

Why Use AutoOPERATOR EXECs .
What AutoOPERATOR EXECs Are. .
What the EXEC Testing Facility Provides .

Overview . 413
What Breakpoints Are .
Division of Breakpoints .
How to Use Variables .
Using the EXEC Testing Facility with OSPI EXECs .
How to Use the IMFEXEC BKPT Statement .
How to Trace the Execution of the EXEC .
What to Set Up Before Using the EXEC Testing Facility .

Accessing the EXEC Testing Facility .
Displaying Interpreted Source Statements .
Tracing Interpreted Source Statements .
Setting Conditional Breakpoints .
Displaying Variables .
Creating and Modifying Variables .
Testing OSPI Sessions .

Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs 431
Distributed Utility EXECs .431

SYSPROG Utility EXECs. .
How to Resolve Compound SYSPROG Variables .

@STATASK: Start Tasks .
CANEXEC: Cancel Delvars .
DELVARS: Delete Variables .
MUT001C: Issue $E, $P, and $C Commands .
SUBMIT: Find Subsystem Handling Job Submissions .
SUBMITOR: Submit Jobs on the Target Subsystem .
RASM: Auxiliary Storage Manager Information .
RCPU: CPU Usage Information .
RCSS: Common Storage Usage Information .
RENQ: SYSPROG ENQUEUE Command .
RIO: System Input/Output Information .
RMDE: Device Monitoring .
RMON: Address Space Monitoring .
 Contents xi

. 447

. 448
. 449
. . 450
 . 452
. 453
 . . 454
 . 455
 . 457
. . 460
 . 461
. 462
 . 463
. 464
468

 . 469
. 470
471

3

RMPA: Channel Path Monitoring .
RMTP: Monitor Pending Mounts .
RPAG: System Wide Paging Information .
RPRO: Monitor Progress of an Address Space .
RREP: Retrieve WTOR IDs .
RREPRX: Retrieve WTOR IDs .
RRES: Retrieve Outstanding Reserves .
RRSM: Real Storage Management Information .
RSPA: Retrieve DASD Space Information .
RSTA: Retrieve Status of an Address Space .
RSYS: System Dump Data Sets Information .
RTPI: Teleprocessing Input/Output Information .
RTSU: Information on TSO Users .
@TIMER: Interface to Timer Queues .
JES2DI: Retrieve Initiator Information .
JES2DQ: Retrieve Execution Queue Information .
CNVSECS: Convert HH:MM:SS Format to Seconds .
CNVTIME: Convert Time in Seconds to HH:MM:SS .

Appendix A. SYSPROG EXEC Cross-Reference . 47

Glossary .. 481

Index . 493
xii MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

. . . 2
 . . 25
 . . 25
. . 34
. . . 38
. . 108
 . . 110
. . 146
 . 249
 . 263
. . 434
. . 435
 . . 436
. . 436
. . 437
 . . 437
. 438
. . . 439
. 439
. 440
 . 441
. 442
. . . 44
. 443
 . . 444
. 444
 . . 445
. 446
 . . 447
. 447
. 448
. 449
. . . 450
 . 450
. . . 452
 . 452
 . . 453
. 453
 . 454
 . . 455
. 455
. . . 457
. 459
 . . 460
. 460
. 461
. . . 462
. 462
. . . 463
. 463
 . . 464
Tables

1. Finding Additional Information.
2. REXX EXEC Parsing Example 1 .
3. REXX EXEC Parsing Example 2 .
4. Example of ALERT-initiated EXEC Parameters and Variables
5. Time-Initiated EXEC Parameters and Values .
6. Common Function EXECs .
7. Special Functions. .
8. FUNCTION Names and Return Codes .
9. FUNCTION Names and IMFCC Return Codes .

10. List of IMFEXEC CICS Command Statements .
11. @STATASK Parameters .
12. DELVARS Parameters .
13. MUT001C Parameters .
14. SUBMIT Parameters .
15. SUBMITOR Parameters .
16. RASM Parameters .
17. Variables Returned by RASM in the LOCAL POOL .
18. RCPU Parameters .
19. Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems
20. Variables Returned by RCPU in the LOCAL POOL for PR/SM Systems
21. Variables Returned by RCSS in the LOCAL POOL .
22. Variables Returned by RENQ in the LOCAL POOL .
23. RIO Parameters . 3
24. Variables Returned by RIO in the LOCAL POOL .
25. RMDE Parameters .
26. Variables Returned by RMDE in the LOCAL POOL .
27. RMON Parameters. .
28. Variables Returned by RMON in the LOCAL POOL.
29. RMPA Parameters .
30. Variables Returned by RMPA in the LOCAL POOL .
31. Variables Returned by RMTP in the LOCAL POOL .
32. Variables Returned by RPAG in the LOCAL POOL.
33. RPRO Parameters .
34. Variables Returned by RPRO in the LOCAL POOL. .
35. RREP Parameters.
36. Variables Returned by RREP in the LOCAL POOL. .
37. RREPRX Parameters .
38. Variables Returned by RREPRX in the LOCAL POOL .
39. Variables Returned by RRES in the LOCAL POOL. .
40. RRSM Parameters .
41. Variables Returned by RRSM in the LOCAL POOL .
42. RSPA Parameters .
43. Variables Returned by RSPA in the LOCAL POOL .
44. RSTA Parameters. .
45. Variables Returned by RSTA in the LOCAL POOL .
46. Variables Returned by RSYS in the LOCAL POOL.
47. RTPI Parameters .
48. Variables Returned by RTPI in the LOCAL POOL.
49. RTSU Parameters.
50. Variables Returned by RTSU in the LOCAL POOL.
51. @TIMER Parameters .
 Tables xiii

 . . 468
. 468
. 469
 . . 470
470

 . 471
471
. . 473
52. JES2DI Parameters .
53. Variables Returned by JES2DI in the LOCAL POOL .
54. Variables Returned by JES2DQ in the LOCAL POOL .
55. CNVSECS Parameters .
56. Variables Returned by CNVSECS in the LOCAL POOL .
57. CNVTIME Parameters .
58. Variables Returned by CNVTIME in the LOCAL POOL .
59. SYSPROG Service EXEC and Variable Cross-Reference
xiv MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 . . 27
. . 30
 . 33
 . 34
. . 36
. . 40
. . 43
 . 45
. . 47
. . . 68
 . . 69
 . . 70
. . 71
100
 . 100
 . 102
 . . 117
 . . 120
. . 123
. . 417
. . 418
. . 419
 . 421
 . 422
 . . 423
 . 424
 . . 426
. . 428
 . 429
. . . 430
 . 433
Figures

1. Sample Comment Section for a REXX EXEC .
2. Rule-Initiated REXX EXEC Example.
3. ALERT-Initiated REXX EXEC Example 1. .
4. ALERT-Initiated REXX EXEC Example 2. .
5. User-Initiated REXX EXEC Example.
6. Time-Initiated REXX EXEC Example .
7. EXEC-Initiated REXX EXEC Example .
8. Externally Initiated REXX EXEC Example .
9. End-of-Memory—Initiated EXECs Example .

10. Saving Variables in a Variable Pool.
11. Retrieving Variables in a Variable Pool Example .
12. Using VENQ and VDEQ to Serialize Variables .
13. Multi-Line WTO EXEC Example .
14. Example of Using IMFEXEC CNTL NOCMD .
15. Example 1 of BBI-SS PAS Journal Entry .
16. Example 2 of BBI-SS PAS Journal Entry .
17. OSPI Script Development Panel .
18. OSPI Transmission Keystroke Panel .
19. Example of Error Panel .
20. EXEC Management Application Panel .
21. EXEC Test Control Panel .
22. EXEC Test Control Panel—Advanced Format .
23. EXEC Test Panel with the VAROFF Option .
24. EXEC Test Panel with the VARON Option. .
25. EXEC Trace Panel .
26. Conditional Breakpoint Control Panel. .
27. Variable Selection Panel .
28. Variable Add/Update Panel .
29. Variable HEX Display .
30. OSPI Session Panel .
31. Example of SYSPROG Utility Usage .
 Figures xv

xvi MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

r.

s

use

sed

on

n

ools.
About This Book

TheMAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs is for
system programmers who need to perform advanced automation tasks in the data cente

Use this manual with the MAINVIEW AutoOPERATOR product (also referred to simply a
AutoOPERATOR) to learn about:

• How you can use REXX EXECs with AutoOPERATOR to create EXECs that you can
to automate your environment, including:

– How AutoOPERATOR processes parameters in EXECs
– How to use variables and variable pools
– How to control EXEC execution in AutoOPERATOR
– How to perform some advanced tasks with EXECs across targets
– How to debug your AutoOPERATOR EXECs

• How to use the Open Systems Procedural Interface (OSPI) to interact with VTAM-ba
products

This manual also documents:

• The IMFEXEC command statements you can use with AutoOPERATOR EXECs

• AutoOPERATOR-supplied utility EXECs

How This Manual Is Organized

The manual contains the following chapters:

• Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your
Environment

Discusses how you can

– Use REXX EXECs and AutoOPERATOR IMFEXEC commands to write automati
tasks

– Use variables to save data
– Control EXEC execution once you schedule the EXEC

• Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs

Describes the conventions, syntax, and restrictions for writing REXX EXECs.

• Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR

Describes how AutoOPERATOR interprets and uses information passed to EXECs i
positional parameters.

• Chapter 4. Using Variables in REXX EXECs

Describes the different types of variables and their pools and how to manipulate the p

• Chapter 5. Controlling EXEC Execution

Describes the different ways you can send an EXEC to run and how to control its
execution.
xvii

ith

ith

ide

ys.

cess
• Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs

Describes how you can send EXECs, messages, and ALERTS to different targets w
EXECs.

• Chapter 7. Accessing DB2 from AutoOPERATOR

Describes how you can access DB2 from AutoOPERATOR with REXX EXECs if you
have the BMC Software RxD2/LINK product installed.

• Chapter 8. Interacting with VTAM Applications with OSPI

Describes how to use Open Systems Procedural Interface (OSPI) to communicate w
VTAM applications.

• Chapter 9. Performing Automation Using AOAnywhere

Describes how to use the AOAnywhere EXEC syntax to perform automation from outs
the AutoOPERATOR BBI-SS PAS.

• Chapter 10. Accessing Array Data with AutoOPERATOR EXECs

Describes how to use IMFEXEC ARRAY commands to access data collected in arra

• Chapter 11. Using the MAINVIEW API

Describes commands, functions and facilities that allow AutoOPERATOR users to ac
data available on the MAINVIEW Databus with AutoOPERATOR EXECs.

• Chapter 12. Using the IMFEXEC Statements

Lists the IMFEXEC command statements you can use with REXX to write EXECs to
accomplish advanced automation tasks.

• Chapter 13. Testing and Debugging EXECs Interactively

Describes when and how to use the AutoOPERATOR EXEC Tester and provides
examples of its features.

• Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs

Lists the AutoOPERATOR-supplied utility EXECs available with AutoOPERATOR.

This manual also contains:

• An appendix for SYSPROG service EXECs
• A glossary
• An index
xviii MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

BBI)
MAINVIEW AutoOPERATOR Product Library

MAINVIEW AutoOPERATOR is available with seven options:

• MAINVIEW AutoOPERATOR for OS/390
• MAINVIEW AutoOPERATOR for IMS
• MAINVIEW AutoOPERATOR for CICS
• MAINVIEW AutoOPERATOR Access NV
• MAINVIEW AutoOPERATOR TapeSHARE
• MAINVIEW AutoOPERATOR for MQSeries
• MAINVIEW AutoOPERATOR Elan Workstation

The base product and these options are documented in the following MAINVIEW
AutoOPERATOR manuals:

• MAINVIEW AutoOPERATOR Customization Guide
• MAINVIEW AutoOPERATOR Basic Automation Guide
• MAINVIEW AutoOPERATOR Advanced Automation Guide for CLIST EXECs
• MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs
• MAINVIEW AutoOPERATOR Options User Guide
• MAINVIEW AutoOPERATOR for MQSeries Installation and User Guide
• MAINVIEW AutoOPERATOR Reference Summary
• MAINVIEW AutoOPERATOR Solutions Guide

This manual also makes several references to the BMC Software Intercommunications (
PAS, which provides subsystem communication in its own MVS address space. The BBI
online environment is described in the

• MAINVIEW Common Customization Guide

• MAINVIEW Administration Guide

• Using MAINVIEW
xix

.

Recommended Reading

There is no recommended reading.

Related Reading

The following lists the IBM documents that are referenced in this guide:

• MVS/ESA Initialization and Tuning Guide, GC28-1635
• TSO Extensions Version 2: CLISTs, SC38-1876
• TSO Extensions Version 2: REXX User's Guide, SC28-1882
• TSO Extensions Version 2: REXX Reference, SC28-1883
• TSO Extensions Version 2: Customization, SC28-1872
• TSO Extensions Version 2: Command Reference, SC28-1881
• CICS Supplied Transactions, SC33-1686-02
• CICS Operations and Utilities Guide, SC33-1685
• Routing and Descriptor Codes, GC28-1194
• Routing and Descriptor Codes, GC28-1666
• Routing and Descriptor Codes, GC28-1816
• Supervisor Services and Macro Instructions, GC28-1154

and the following BMC Software documents:

• MAINVIEW Common Customization Guide
• MAINVIEW Administration Guide
• Using MAINVIEW
• MAINVIEW Quick Reference
• OS/390 and z/OS Installer Giude
• Implementing Security for MAINVIEW Products
• MAINVIEW Alternate Access Implementation and User Guide
• MAINVIEW AlarmManager User Guide
• RxD2/LINK™ User Guide and Reference
• MAINVIEW for CICS User Guide

What the Conventions Are

The following syntax notation is used in this manual. Do not enter the special characters

• Brackets, [], enclose optional parameters or keywords.
• Braces, { }, enclose a list of parameters; one must be chosen.
• A vertical line, |, separates alternative options; one can be chosen.
• An italicized or underlined parameter is the default.
• AN ITEM IN CAPITAL LETTERS must be entered exactly as shown.
• Items in lowercase letters are values you supply.
xx MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

m

ces

ch as
ing

 be
tten
ge.

S,

rams
Chapter 1. Introduction to Using AutoOPERATOR and EXECs
to Automate Your Environment

This manual documents how you can use REXX EXECs with AutoOPERATOR to perfor
automation tasks on your system. If you would like to write CLIST EXECs for
AutoOPERATOR, use theMAINVIEW AutoOPERATOR Advanced Automation Guide for
CLIST EXECs manual.

For complete information for writing REXX EXECs, refer to the IBM publicationsTSO
Extensions Version 2: REXX/MVS User’s Guide andTSO Extensions Version 2: REXX/MVS
Reference.

This chapter briefly discusses REXX EXECs and how you can use them with
AutoOPERATOR to create programs to automate your environment. This chapter introdu
the following concepts:

• Using EXECs with AutoOPERATOR

• Choosing the EXEC language

• The seven different ways an EXEC can be scheduled

• Passing information to EXECs

• Controlling EXEC execution

• Using variables in EXECs

Overview

Basic automation tasks, such as reacting to messages, are provided through facilities su
the AutoOPERATOR Rule Processor application. More complex automation tasks, includ
interfaces to performance, scheduling, and network products, require programs that can
tailored to specific site needs. These programs, called AutoOPERATOR EXECs, are wri
by system programmers or operators using either the TSO CLIST or TSO REXX langua

AutoOPERATOR EXECs:

• Are IBM TSO CLISTs and REXX programs with special language extensions for CIC
IMS, and MVS management through the use of IMFEXEC commands

For a list of REXX commands that AutoOPERATOR doesnot support, refer to
“Restrictions in REXX EXECs” on page 21.

• Use the same logical expression and operator syntax as TSO CLISTs and REXX prog
and provide many of the same TSO symbolic control variables, built-in functions,
assignment statements, and conditional statements.

These are described in this book in “Using REXX Conventions and Syntax in
AutoOPERATOR REXX EXECs” on page 13 and in the IBM publication,TSO
Extensions Version 2: REXX/MVS User’s Guide.

• Are upward-compatible with TSO releases and versions.
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment1

Table 1 shows where you can find more information in this book.

Table 1. Finding Additional Information

To learn more about... See page...

Using REXX syntax, conventions, and built-in functions 13

Passing parameters to EXECs in AutoOPERATOR 23

Using variables 49

Controlling EXEC execution 73

Using advanced techniques 87

Using the IMFEXEC statements in AutoOPERATOR REXX EXECs 237
2 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

s a
r its

s

,

Choosing the EXEC Language: REXX or CLIST

For each task, you can choose either REXX or CLIST to write your EXECs with. CLIST i
language which is familiar to many system programmers, but REXX is being acclaimed fo
simplicity and power.

There are some performance considerations:

• REXX EXECs perform approximately 25% faster than CLIST EXECs.

• CLIST EXEC performance can be improved by:

– Placing all comments on statements which do not include executable statement

– Coding REXX=YES in the AAOEXP00 member of BBPARM

• Using VLF can reduce both CPU and I/O consumption

Refer to the IBM publicationTSO/E Version 2 Customization Manual for information on
how to use VLF.

For a complete discussion about writing TSO CLISTs, refer to the IBM publicationTSO
Extensions Version 2: CLISTS. For a complete discussion about writing TSO REXX EXECs
refer to the IBM publicationsTSO Extensions Version 2: REXX/MVS User’s Guide andTSO
Extensions Version 2: REXX/MVS Reference.

If you want to create CLIST EXECs for AutoOPERATOR, refer to the BMC Software
publicationMAINVIEW AutoOPERATOR Advanced Automation Guide for CLIST EXECs.
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment3

t of
ECs
r

and

r

d

.

d

f

s

ly
Invoking AutoOPERATOR EXECs

A system programmer or operator can interactively create EXECs (consisting of a subse
REXX commands and IMFEXEC commands) by using standard edit procedures. The EX
are then stored in the online SYSPROC DD (or SYSEXEC DD for REXX EXECs) for late
execution.

These EXECs are powerful programs that execute in the AutoOPERATOR environment
interact with a target, thus enabling you to create robust automation procedures.

All EXECs can be initiated or invoked from the SYSPROC DD (and the SYSEXEC DD fo
REXX EXECs) in one of seven ways:

EXEC How it is invoked

Rule-initiated Scheduled when a message or command matches an enable
Rule that specifies the name of an EXEC to be invoked.

ALERT-initiated Scheduled when you enter any value into theRSP field of the
ALERT Detail Display for an ALERT which has anE in theIND
field. TheE indicates that there is a follow-up EXEC associated
with the ALERT.

For information regarding the ALERT Management Facility,
refer to the chapter “ALERT Management Facility” in the
MAINVIEW AutoOPERATOR Basic Automation Guide.

User-initiated Scheduled when a user enters an EXEC name from a BBI-TS
COMMAND line with the command prefix % or 4, or is entered
as a parameter of the MVS MODIFY command when it is issue
against a BBI-SS PAS.

For example, F SYSB,%EXECA where EXECA is the name o
the EXEC to be scheduled.

You can also schedule a user-initiated EXEC from the
AutoOPERATOR EXEC Manager application. Refer to the
MAINVIEW AutoOPERATOR Basic Automation Guide for more
information.

Time-initiated Scheduled when the AutoOPERATOR Timer Facility invokes
the specified EXEC at times you specify. You can use the
AutoOPERATOR Timer Facility to schedule EXECs or the
AutoOPERATOR-supplied sample solution @TIMER. Refer to
theMAINVIEW AutoOPERATOR Basic Automation Guide for
more information about using these methods.

EXEC-initiated Scheduled when one EXEC (for example, EXECABC) contain
an IMFEXEC SELECT command statement that invokes a
second EXEC (for example, EXECXYZ).

EXECs scheduled in this way can execute either synchronous
or asynchronously (refer to “Invoking EXECs Synchronously
with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78).
4 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

r
s

r a

er to
Externally initiated Scheduled from outside of AutoOPERATOR when the program
IMFSUBEX is called from a job step, as a subroutine of a use
program, from TSO, or from another AutoOPERATOR addres
space.

End-of-Memory–initiated Scheduled at end-of-memory when an initiator, a TSO user, o
started task is terminated.

These EXECs, once they are invoked, perform their specified tasks on your system. Ref
Chapter 3, “Passing Parameters to REXX EXECs in AutoOPERATOR” on page 23 for a
complete discussion.
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment5

out

X
nal
se

ut
Passing Information to REXX EXECs

For a REXX EXEC to perform its tasks, it must be able to receive and retain information ab
the system. This information is passed to EXECs through:

• Statements called ARG statements

The first statement in an AutoOPERATOR REXX EXEC must state that this is a REX
EXEC. The next statement is usually the ARG statement and it is coded with positio
parameters that take values from the input that schedules the EXEC and makes tho
values available to the EXEC itself.

Chapter 3, “Passing Parameters to REXX EXECs in AutoOPERATOR” on page 23
contains examples of ARG statements and the information that gets passed to them
depending on the way the EXEC is invoked.

• Variables in variable pools

Variables reside in four categories of variable pools and they receive and retain
information that the EXEC requires to complete its tasks.

Chapter 4, “Using Variables in REXX EXECs” on page 49 contains a discussion abo
variables and variable pools.

The table on the following two pages summarizes the different possible values for the
positional parameters on a ARG statement for the seven different EXEC types. The table
shows up to 11 positional parameters but there can be more (up to 255 bytes).
6 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Positional Parameters for the ARG Statement

Positional
Parameter

Rule-initiated EXEC ALERT-initiated
EXEC

User-initiated
EXEC

EXEC-initiated
EXEC

1 Refer to page 29 EXEC name EXEC name EXEC name

2 Refer to page 29 Refer to page 31 First optional
parameter

First optional
parameter

3 Refer to page 29 Refer to page 31 Second optional
parameter

Second optional
parameter

4 Refer to page 29 Refer to page 31 Third optional
parameter

Third optional
parameter

5 Refer to page 29 Refer to page 31 Fourth optional
parameter

Fourth optional
parameter

6 Refer to page 29 Refer to page 31 Fifth optional
parameter

Fifth optional
parameter

7 Refer to page 29 Refer to page 31 Sixth optional
parameter

Sixth optional
parameter

8 Refer to page 29 Refer to page 31 Seventh optional
parameter

Seventh optional
parameter

9 Refer to page 29 Refer to page 31 Eighth optional
parameter

Eighth optional
parameter

10 Refer to page 29 Refer to page 31 Ninth optional
parameter

Ninth optional
parameter

11 Refer to page 29 Refer to page 31 Tenth optional
parameter

Tenth optional
parameter

Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in
AutoOPERATOR” on page 23. Refer to that chapter for more detailed information, especially for
ALERT-initiated EXECs and Rule-initiated EXECs.
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment7

e-
-

Positional Parameters for the ARG Statement

Positional
Parameter

Time-initiated EXEC Externally initiated EXEC End-of-Memory EXEC or
IMFEOM

1 EXEC name EXEC name sp 1

2 Target name First optional parameter NORMAL or ABNORMAL

3 IMS ID - Used only for
AutoOPERATOR for IMS
option

Second optional parameter N/A

4 BBI-SS PAS subsystem
identifier

Third optional parameter N/A

5 Current Gregorian date Fourth optional parameter N/A

6 Time the EXEC is scheduled Fifth optional parameter N/A

7 Day of the week Sixth optional parameter N/A

8 Current Julian date Seventh optional parameter N/A

9 Elapsed time of the active
IMS/VS. Used only for
MAINVIEW
AutoOPERATOR for IMS.

Eighth optional parameter N/A

10 The IMS/VS restart type.
Used only for MAINVIEW
AutoOPERATOR for IMS.

Ninth optional parameter N/A

11 Number of times the EXEC
has been invoked.
Used only for MAINVIEW
AutoOPERATOR for IMS.

Tenth optional parameter N/A

Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in
AutoOPERATOR” on page 23. Refer to that chapter for more detailed information, especially for tim
initiated EXECs. See “End-of-Memory–Initiated REXX EXEC” on page 46 for information about End
of-Memory—initiated EXECs.
8 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

at

lled

ds to
on
Controlling EXEC Execution

Each EXEC represents a unit of work that needs to be completed. Just as any system th
handles requests to complete work, AutoOPERATOR provides scheduling facilities for
EXECs. EXECS are queued for execution to either:

• The Normal queue

• The Priority queue

When an EXEC is scheduled to either the Normal or Priority queue, it waits for a server, ca
a thread, to become available.

You can control how an EXEC executes on the system by first specifying:

• How many threads you define for each queue

• Which queue you want to schedule the EXEC for

• Whether you want the EXECs to execute synchronously or asynchronously

• What time limits you specify for the queues

Once an EXEC is scheduled and running, you can also use certain BBI control comman
manually manipulate the progress of the EXEC. Chapter 5, “Controlling EXEC Execution”
page 73 contains discussions for all these items.
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment9

l to
her
, and

, in

nd
Cs”

nt

y

Using Variables in AutoOPERATOR EXECs

Complex EXECs must be able to do much more than issue commands and return contro
their callers. An EXEC must be able to request information from AutoOPERATOR (and ot
products), compare the information, compare the time elapsed since the last observation
effect changes that other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily or permanently
a simple manner so that it can be accessed later by the same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds of variables a
variable pools. For a complete discussion, see Chapter 4, “Using Variables in REXX EXE
on page 49.

Variable Pool Name Description

TSO variables Exist for the life of the EXEC.

This chapter lists:

• AutoOPERATOR–supplied TSO variables
• Modifiable TSO variables
• Non-modifiable TSO variables

LOCAL variables LOCAL variables are stored in a pool that can be accessed only by the curre
EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).

AutoOPERATOR passes information to an EXEC in this pool. It is also used b
AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.
10 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

riable
Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of the same EXEC or other EXECs.

The use of the expression “GLOBAL variables” in this book refers to both
SHARED and PROFILE variables.

SHARED variables

SHARED variables are stored in a
pool that is accessible to all EXECs in
the BBI-SS PAS . They can be read,
modified, created and deleted by any
number of EXECs or Rules. Since
EXECs can access them
simultaneously, their access should be
serialized (see IMFEXEC VENQ and
VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.

AutoOPERATOR creates a number of
SHARED variables that contain
system-specific information.
SHARED variables are accessible to
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.

This chapter lists the
AutoOPERATOR-supplied variables.

PROFILE variables

PROFILE variables are similar to
SHARED variables with the exception
that they are persistent across IPLs and
their contents are never lost unless
explicitly deleted.

PROFILE variables are not accessable
from Rules.

Note: Variable names must be at least 1 and not more than 32 characters in length. The contents of any va
cannot exceed 256 characters.

Variable Pool Name Description
Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment11

12 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

re

ter

t to

c
arting

ted
Chapter 2. Using REXX Conventions and Syntax in
AutoOPERATOR REXX EXECs

This chapter describes statements and variables you can use for a REXX EXEC. For mo
complete information about writing REXX EXECs in general, refer to the IBM manuals:

• TSO Extensions Version 2: REXX/MVS User’s Guide

• TSO Extensions Version 2: REXX/MVS Reference

Using Expressions and Operators in REXX EXECs

All of the arithmetic, comparative and logical operators described in the IBM publicationTSO
Extensions Version 2 REXX Reference guide are valid in a REXX EXEC expression running
within AutoOPERATOR. An expression combines variables, whole numbers, and charac
strings with operators. For example, the EXEC statement:

IF CMD = SUBSTR(Z1,1,1) THEN ...

uses the comparative operator = in an expression with the REXX IF conditional statemen
compare the first character of the character string in theZ1 symbol to the value in theCMD
symbol.

The functionSUBSTR is a built-in REXX function that replaces the function call with specifi
characters from a character string. The actual characters are selected by specifying a st
position and a length for the portion of the character string to be used.

In this example,SUBSTR is replaced with the first character of the character string substitu
for theZ1 symbol.
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs13

r

ing

tine

lue
Using Control Statements in REXX EXECs

AutoOPERATOR EXECS support the following REXX control statements1.

Statement Description

CALL Used to invoke a routine or control the trapping of certain conditions.

EXIT Used to leave a program unconditionally.

ITERATE Alters the flow of control within a repetitive DO loop.

LEAVE Causes immediate exit from one or more repetitive DO loops.

RETURN Used to return control (and possibly a result) from a REXX program o
internal routine to the point of its invocation.

Note: If the EXEC is invoked with the IMFEXEC SELECT
EXEC(exec) WAIT(yes) statement, the RETURN control
statement can be used only to return control from the REXX
EXEC. Passing a value (RESULT) is not supported.

SELECT Used to conditionally execute one of several alternative instructions or
sets of instructions.

SIGNAL Causes an abnormal change in the flow of control, or controls the trapp
of certain conditions.

Using Assignment Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX assignment statements.2

Statement Description

ARG Used to retrieve argument strings passed to a program or internal rou
and assign them to variables.

PARSE Used to assign data to one or more variables.

PULL Used to read a string from the queue (data stack) and assign it to a
variable.

symbol = data This assignment statement is the most common way of changing the va
of a variable.

1 The descriptions for these REXX control statements are from the IBM publication,TSO Extensions Version 2:
REXX/MVS Reference, Chapter 3, “Keyword Instructions”.

2 The descriptions for these REXX assignment statements are from the IBM publication,TSO Extensions Version
2: REXX/MVS Reference, Chapter 3, “Keyword Instructions”.
14 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

et.

e

Using Conditional Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX conditional statements.

Statement Description

DO-WHILE-END Executes a set of related instructions only while specific condition
exists.

DO-UNTIL-END Executes a set of related instructions until a specific condition is m

DO-TO-BY-FOR Executes a set of related instructions using special keywords to
control the loop. See theTSO Extensions Version 2 REXX Referenc
guide for more information on these keywords.

DO-FOREVER Executes a set or related instructions until a specific instruction is
issued to end the loop (for example, LEAVE or SIGNAL).

IF-THEN-ELSE Used to conditionally execute an instruction or set of instructions
depending on the evaluation of the expression.
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs15

ter

tly

l,

on

er
g,
or a
Using Built-In Functions in REXX EXECs

AutoOPERATOR supports the following REXX built-in functions.3 For additional
information on syntax and parameters to pass to the function, see theTSO Extensions Version
2 REXX Reference guide.

3 The descriptions for these REXX built-in functions are from the IBM publication,TSO Extensions Version 2:
REXX/MVS Reference, Chapter 4, “Keyword Instructions”.

Built-in Function Description

ABBREV() Determines whether a character string is an abbreviation of another charac
string.

ABS() Returns the absolute value of a number.

ADDRESS() Returns the name of the environment to which host commands are curren
being submitted.

ARG() Returns an argument string or information about the argument strings to a
program or internal routine.

CENTER() or CENTRE() Returns a string centered according to specifications.

COMPARE() Determines if two strings are equal and returns 0 if so. If they are not equa
the character position at which they become not equal is returned.

CONDITION() Returns the condition information associated with the current trapped
condition.

COPIES() Concatenates strings together and returns the concatenated string.

C2D() Character to decimal. Returns the decimal value of the binary representati
of a string.

C2X() Character to hexadecimal. Converts a character string to its hexadecimal
representation.

DATATYPE() Determines whether a string is numeric or character. Also determines wheth
a string is alphanumeric, binary, a mixed SBCS/DBCS string, a DBCS strin
lowercase, mixed case, a number, a symbol, uppercase, a whole number,
hexadecimal number.

DATE() Returns the local date in the format:dd mon yyyy

DELSTR() Deletes a substring from a character string.

DELWORD() Deletes a string from a group of character strings.

DIGITS() Returns the current setting of NUMERIC DIGITS.

D2X() Decimal to hexadecimal. Returns a string of hexadecimal characters that
represent a decimal number.

ERRORTEXT() Returns the error text associated with a particular error message number.

EXTERNALS() Always returns a 0. This function is used under VM/SP.
16 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

the

o

FIND() Searches for a phrase within a character string and returns the position of
first word of the phrase in the string.

FORM() Returns the current setting of NUMERIC FORM.

FORMAT() Rounds and formats a number.

FUZZ() Returns the current setting of NUMERIC FUZZ.

INDEX() Searches for a character string within another character string and returns
either the starting position of the character string being searched for or 0.

INSERT() Inserts a character string into another character string.

JUSTIFY() Formats blank-delimited words by adding pad characters between words t
justify both margins.

LASTPOS() Returns the position of the last occurrence of one string within another.

LEFT() Returns a string containing the leftmost characters of a string.

LENGTH() Returns the length of a string.

LINESIZE() For AutoOPERATOR, always returns '131'.

MAX() Returns the largest number from a list of specified numbers.

MIN() Returns the smallest number from a list of specified numbers.

OVERLAY() Overlays part or all of a string with a new string.

POS() Returns the position of one string within another.

QUEUED() Returns the number of lines remaining in the queue at the time when the
function is invoked.

RANDOM() Returns a pseudo-random nonnegative whole number.

REVERSE() Returns a string, swapped end for end.

RIGHT() Returns a string containing the rightmost characters of a string.

SIGN() Returns a number that indicates the sign of a number.

SOURCELINE() Returns a source line in the current EXEC.

SPACE() Formats the blank-delimited words in a string with pad characters between
each word.

STRIP() Removes leading and/or trailing characters from a string.

SUBSTR() Returns the substring of a string.

SUBWORD() Returns a substring of a string of words. The number of words returned is
specified by a length parameter.

SYMBOL() Returns the state of a symbol (BAD, LIT, or VAR).

TIME() Returns the local time. By default, the time is returned in the 24-hour clock
format (hh:mm:ss).

Built-in Function Description
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs17

ns.

in a

l

rns
d

rd

.

e of
In addition to these built-in functions, if you have the BMC Software product RxD2/LINK
product installed, AutoOPERATOR also has access to the following REXX built-in functio

TRACE() Returns trace actions currently in effect.

TRANSLATE() Translates characters in a string to other characters, or reorders characters
string.

TRUNC() Returns the integer part of a number and, optionally, the number of decima
places specified.

USERID() While running under AutoOPERATOR, by default will return the subsystem
(SS) ID of AutoOPERATOR. If a value is coded for the PREFIX parameter in
BBPARM member AAOEXP00, that will be the value returned.

VALUE() Returns the value of a specified symbol.

VERIFY() Verifies that a string is composed of a predefined set of characters and retu
the position of the first character in the string that is not within the predefine
set of characters.

WORD() Returns a blank-delimited word from a string.

WORDINDEX() Returns the position of the first character in a specified blank-delimited wo
in a specified string.

WORDLENGTH() Returns the length of a specified blank-delimited word in a specified string

WORDPOS() Searches a specified string for the first occurrence of a specified sequenc
blank-delimited words and returns the word number of the first word of the
specified sequence of blank-delimited words found in the specified string.

WORDS() Returns the number of blank-delimited words in a specified string.

X2C() Converts a hexadecimal string to a character string.

X2D() Converts a hexadecimal string to decimal format.

Built-in Function Description

Built-in Function Description

CONVSTCK(tod) Converts the 8-byte TOD clock into display format of YYYYDDD
HHMMSSTH.

CTOD(tod) Converts the 8-byte TOD clock time into display format of HHMMSSTH.

F2C(f) Converts a floating point string to a character string.

GBLVAR Creates and manages the global variable environment.

P2C(p) Creates a packed decimal string to a character string.

UENV(hcename,pgm) Identifies to REXX Host Command Environment (HCE) called hcename,
such that pgm will receive control for ADDRESS hcename.

VARSPF() Converts a compound REXX variable to a simple ISPF dialog variable.

WAITSEC() Specifies the number of seconds to wait before continuing to process.
18 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

, or

 is

F

 also

pon
Using TSO/E Functions for REXX EXECs

AutoOPERATOR supports the following TSO/E REXX functions.4 For additional information
on syntax and parameters to pass to the function, see theTSO Extensions Version 2 REXX
Reference guide.

4 The descriptions for these REXX built-in functions are from the IBM publication,TSO Extensions Version 2:
REXX/MVS Reference, Chapter 4, “Keyword Instructions”.

Function Description

LISTDSI() Sets several variables that describe a data set and returns a function code of 0, 4
16 that shows the completion code.

MSG() Returns the previous status of message issuing, which can be ON or OFF. It also
allows you to turn message issuing on or off.

OUTTRAP() Returns the name of the variable in which trapped output is stored, or if trapping
not in effect, returns the word off. It also can be used to set trapping into effect.

PROMPT() Returns the previous setting of prompting for the EXEC, which will always be OF
when running under AutoOPERATOR.

STORAGE() Returns a specified number of bytes of data from a specified storage address. It
allows an EXEC to modify storage.

SYSDSN() Returns a message indicating whether a data set exists and is available for use.

SYSVAR() Sets variables that describe the current environment. The variable set depends u
the option used.
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs19

nts

the
.

sue

set,

te

.

the

tly
Using TSO/E REXX Commands in REXX EXECs

AutoOPERATOR supports the following TSO/E REXX commands5 if you specify the
ADDRESS MVS command prior to issuing the command. For additional information on
syntax and usage of the commands, see theTSO Extensions Version 2 REXX Reference guide.

Command Description

DELSTACK Deletes the most recently created data stack that was created by the
NEWSTACK command, and all elements on it.

If a new data stack was not created, DELSTACK removes all the eleme
from the original data stack.

DROPBUF Deletes the most recently created data stack buffer that was created by
MAKEBUF command, and all elements on the data stack in the buffer

To remove a specific data stack buffer and all buffers created after it, is
the DROPBUF command with the number of the buffer.

EXECIO Can be used to perform input and output operations to and from a data
a stack, or a list of variables.

MAKEBUF Creates a new buffer on the data stack.

The MAKEBUF command can be issued from REXX EXECs that execu
in both the TSO/E address space and non-TSO/E address spaces.

NEWSTACK Creates a new data stack and hides or isolates the current data stack

Elements on the previous data stack cannot be accessed until a
DELSTACK command is issued to delete the new data stack and any
elements remaining in it.

QBUF Queries the number of buffers that were created on the data stack with
MAKEBUF command.

QELEM Queries the number of data stack elements that are in the most recen
created data stack buffer.

QSTACK Queries the number of data stacks in existence for an EXEC that is
executing.

SUBCOM Queries the existence of a specified host command environment.

5 The descriptions for these TSO/E REXX commands are from the IBM publication,TSO Extensions Version 2:
REXX/MVS Reference, Chapter 10, “TSO/E REXX Commands”.
20 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Restrictions in REXX EXECs

AutoOPERATOR REXX EXECs do not support the following REXX language facilities.

• Immediate Commands:

– HI - Halt Interpretation, HT - Halt Typing
– RT - Resume Typing, TS - Trace Start
– TE - Trace End

AutoOPERATOR REXX EXECs do not support the following REXX function:

• XRANGE()

AutoOPERATOR REXX EXECs do not support using the TSO/E CALL or TSO/E Service
Facility (IKJEFFTSR) to give control to an authorized program.
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs21

22 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

R

s to

the

Use
t the
Chapter 3. Passing Parameters to REXX EXECs in
AutoOPERATOR

This chapter describes:

• The four components of a REXX EXEC

• The differences in the ways parameters are passed based on how an AutoOPERATO
REXX EXEC is invoked

For information about CLIST EXECs and AutoOPERATOR, refer toMAINVIEW
AutoOPERATOR Advanced Automation Guide for CLIST EXECs.

Understanding the Four Components of a REXX EXEC

This section briefly describes the four components of REXX EXECs. There are four step
writing REXX EXECs:

• Defining the language

All EXECs are assumed to be CLIST EXECs unless the first statement identifies the
EXEC as a REXX EXEC. Refer to the IBM publicationTSO Extensions Version 2:
REXX/MVS User’s Guide for a complete discussion.

• Passing data

You must include a statement—called the ARG statement—that defines the input
parameters to be used by the EXEC logic.

• Documenting the EXEC

You can include comments, enclosed by /* and */, throughout the EXEC to describe
purpose of the EXEC statements

• Writing the logic

A logic section that contains REXX EXEC statements and commands, and
AutoOPERATOR IMFEXEC commands that perform user-defined automation tasks.
the IMFEXEC commands to specify the automation actions and commands you wan
EXECs to perform.

Each of these parts is described in the following sections.
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR23

ent it
the

XEC
assed

ot

.

rs in
lue of
Defining the Language

The TSO/E processor assumes that it is executing a CLIST EXEC unless the first statem
encounters (the PROC statement) defines the EXEC as a REXX EXEC. For example, if
first statement looks like:

/* REXX EXEC */

then the EXEC is processed as a REXX EXEC.

Passing Data

The REXX EXEC receives data to perform its task through the ARG statement.
AutoOPERATOR uses these parameters to pass values to an EXEC when the EXEC is
invoked.

The information passed through the ARG statements varies, depending on the way the E
is invoked. For example, an EXEC can be invoked by a Rule or by a user and the values p
to the EXEC for these two methods are different.

The ARG statement syntax is:

[UPPER] ARG [template]

where:

UPPER Optional.

Forces translation of any character string to uppercase. If UPPER is n
specified, then no translation takes place.

ARG Instructs REXX to process the arguments passed to this REXX EXEC

template Describes the rules to be used in parsing the input parameters. The
template is a list of symbols separated by blanks and/or patterns.

Handling Strings of Periods

AutoOPERATOR passes all variables required by the type of EXECplus a character string of
". ". The sum of the number of characters in this string and the number of characte
the variables passed to the EXEC is 255. This string of periods is concatenated to the va
the last positional parameter passed to the EXEC.

For example, if the input parameters are:

This is a test

Then you code the ARG statement like this:

ARG P1 P2 P3
24 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

last

xtra

sed
the
Cs)

ops

P)

Cs.
And the values of the parameters P1, P2, and P3 are:

To avoid this string of periods, code a single period (.) or any valid variable name after the
variable name in the template; for example:

ARG P1 P2 P3 .

This eliminates the string. Then the values of the parameters P1, P2, and P3 are:

If fewer values are to be passed to the EXEC than there are parameters specified, the e
parameters are filled in with a dummy value of . (period). It is not necessary to use each
symbolic parameter in the logic section of the EXEC.

In AutoOPERATOR, EXECs can be invoked in seven ways. The information (or input) pas
to the REXX EXEC varies depending on how the EXEC is invoked. The input passed to
positional parameters can be different if an EXEC is invoked by a Rule (Rule-initiated EXE
or by a user (user-initiated EXECs).

Following is an example ARG statement for an EXEC named PAYROLL which starts or st
a payroll application when a user schedules the EXEC:

ARG PAYROLL P1

To invoke the EXEC, enter its name (PAYROLL) and the parameter value (START or STO
on the COMMAND line of any AutoOPERATOR panel. AutoOPERATOR searches
BBPROC and executes the EXEC when it finds a member named PAYROLL. It passes a
START or STOP value to the P1 positional parameter and passes the EXEC name,
PAYROLL, as the first positional parameter in the variable named PAYROLL.

AutoOPERATOR does not do the parsing of the message text for Message-initiated EXE
For example, to parse the message:

E JOBNAME,PERFORM=999

you must code the REXX EXEC as:

/* REXX */
PARSE ARG P1 P2 ',' P3 ',' P4

Table 2. REXX EXEC Parsing Example 1

Positional Parameter Parameter Value

P1 This

P2 is

P3 a test (and so on)

Table 3. REXX EXEC Parsing Example 2

Positional Parameter Parameter Value

P1 This

P2 is

P3 a
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR25

The result is:

P1 = E
P2 = JOBNAME
P3 = PERFORM
P4 = 999

The following table lists where you can find complete discussions of each type of REXX
EXEC and the parameters that are passed to them:

To read about... See page...

Rule-initiated EXECs 29

ALERT-initiated EXECs 31

User-initiated EXECs 36

Time-initiated EXECs 38

EXEC-initiated EXECs 42

Externally initiated EXECs 44

End-of-Memory—initiated EXECs 46
26 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

s that

 to

y and
. The
ed to

ted
Documenting REXX EXECs

As discussed in “Passing Data” on page 24, the ARG statement identifies the parameter
the subsequent IMFEXEC commands and EXEC statements process.

Following the ARG statement, you should have a section that uses comment statements
describe the symbolic parameters. A comment statement looks like:

/* This is an example of a comment in an EXEC */

This comment section is optional but highly recommended because it provides consistenc
helps other system administrators, analysts, or operators who use or maintain the EXEC
comment section explains the purpose of the EXEC and the expected values to be pass
each symbolic parameter defined by the ARG statement.

Figure 1 shows an example of the ARG statement and comment section for a user-initia
REXX EXEC named PAYROLL.

/* REXX EXEC */
ARG PAYROLL P1
/*--*/
/* DOC GROUP (MVS) */
/* DOC FUNC (PAYROLL) */
/* DOC CODE (PY) */
/* DOC DESC (Start/Stop PAYROLL Application) */
/* DOC AUTHOR (JAC) */
/*--*/
/* EXEC Description: This sample EXEC, named PAYROLL, starts or */
/* stops the payroll application when the EXEC name, PAYROLL,along*/
/* with a START or STOP parameter, is entered in the command input*/
/* line of an AutoOPERATOR panel. */
/*--*/
/* Symbolic Parameter Definitions: */
/* */
/* EXECNAME The member name for this EXEC in the SYSPROC */
/* concatenated data set. The value for EXECNAME */
/* is PAYROLL. */
/* */
/* P1 The value for P1 is either START or STOP. */
/*--*/

Figure 1. Sample Comment Section for a REXX EXEC
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR27

res.
xcept

plete

ow
Writing the Logic Section

The logic section of a REXX EXEC is a combination of programming elements such as:

Element type For example:

TSO REXX assignment statements ARG, PARSE, PULL

TSO REXX Control statements CALL, EXIT, ITERATE

TSO REXX Built-in functions DATE(), SUBSTR(), WORD()

AutoOPERATOR variables QIMFID, QSMFID, QJNLSTA

and AutoOPERATOR IMFEXEC statements that enable you to write automation procedu
The concept is identical to programming in other languages such as COBOL and PL/I, e
that REXX EXECs are not compiled prior to execution.

This chapter describes passing parameters to AutoOPERATOR REXX EXECs. For com
information about writing REXX EXECs, refer to the IBM publicationTSO Extensions
Version 2: REXX/MVS User’s Guide.

Describing AutoOPERATOR REXX EXECs

The following sections describe the different AutoOPERATOR REXX EXECs based on h
they can be invoked in AutoOPERATOR and how information is passed to the ARG
statement.
28 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

n

ation
e text
neral,

e

ciated
 of the

 the

ve the
T

Rule-Initiated REXX EXECs

An EXEC is Rule-initiated if its name is specified in theEXEC Name/Parms field of the Rule
Processor Action Specification panel of a fired rule.

Refer to the Rule Processor chapters in theMAINVIEW AutoOPERATOR Basic Automation
Guide for more information about writing Rules and how to write a Rule that schedules a
EXEC.

Potential Use

EXECs scheduled by a Rule through the Rule Processor application can perform autom
that cannot be performed by a Rule. For example, a Rule-initiated EXEC can, based on th
of a message, issue ALERTs, submit other EXECs, or invoke SYSPROG services. In ge
use Rule-initiated EXECs to perform advanced automation as a result of a message.

Parameters Passed to the EXEC

The individual words of the message that caused a Rule to fire are passed as input to th
EXEC. A word is any character string separated by a blank or a comma.

Example of input:

The message:

$HASP103 CMFTEXT BAB031

is an example of a message that can cause a Rule to fire. If the Rule has an EXEC asso
with it, then the words of this message are passed as parameters to the ARG statement
EXEC.

Specifying Additional Parameters

From the Rule Processor Action Specification panel, you also can specify additional
parameters you want to send to the EXEC. This is done on theEXEC/Parms field of any
Action Specification panel.

Note that the first parameter specified in this field becomes the first parameter passed to
EXEC. Subsequent parameters are passed to the EXEC in the order they were entered.

This means the message ID and any message text will not be passed to the EXEC. To ha
message ID and any message text passed to the EXEC, the Rule must use the IMFTEX
variable.
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR29

e

hown

e

Example

The following is an example of a Rule-initiated EXEC scheduled by the Rule handling th
$HASP103 message.

The positional parameters passed to the ARG statement of the Rule-initiated EXEC are s
in the following table:

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for the ARG statement
parameters, translates into:

JOB CMFTEXT IS REQUESTING BAB031

For information about Rule-initiated EXECs and retrieving information from MVS multi-lin
WTOs or IMS multi-segment messages, refer to “Rule-Initiated EXECs Initiated by MVS
Multi-Line or Multi-Segment Messages” on page 71.

/*REXX EXEC */
ARG MSGID SETUP W2 W3
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RESPOND TO $HASP103 AND WRITE MESSAGE TO JOURNAL) */
/*--*/

"IMFEXEC MSG 'JOB "SETUP" IS REQUESTING "W2"'"

EXIT

Figure 2. Rule-Initiated REXX EXEC Example

Positional
Parameter

Variable
Name

Value Passed Description of Value Passed

1 MSGID $HASP103 Is the message ID of the message that fired the Rule that
calls this EXEC

2 SETUP CMFTEXT Is the name of the job requesting a tape mount

3 W2 BAB031 Is the volume serial number of the tape to be mounted

4 W3 . Is a dummy value used to fill in for the fourth parameter
that was not passed with the message
30 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

e

up to
p

rnal.

, the

 will

me.

or not
ALERT-Initiated REXX EXECs

An ALERT-initiated EXEC (also called a follow-up EXEC) is scheduled by a user from th
ALERT Management Facility. When coding the EXEC that issues the IMFEXEC ALERT
command, use the EXEC parameter to specify the name of the follow-up EXEC.

The EXEC is then scheduled from the ALERT Detail panel of the ALERT Management
Facility by entering any value (up to three characters) in theRSP column of the panel.

Potential Use

When an ALERT appears on the DETAIL display, it may require an advanced automation
response. An ALERT-initiated EXEC can handle such a response. By entering any value (
three characters) in theRSP column of the ALERT Detail panel, you can schedule a follow-u
EXEC.

One possible use for an ALERT-initiated EXEC is to log messages in the BBI-SS PAS Jou

Parameters Passed to the EXEC

When an ALERT-initiated EXEC is coded, theIMFEXEC ALERT . . . EXEC(ABC)
command can schedule the follow-up EXEC with or without parameters. In this example
EXEC name isABC:

• Without optional parameters:

"IMFEXEC ALERT ... EXEC(ABC)"

• With optional parameters (x y z):

"IMFEXEC ALERT ... EXEC('ABC x y z')"

If the EXEC has parameters, youmust enclose them in single quote marks (' ') with the
EXEC name. If you do not, only the EXEC name will be passed and the parameters
not be passed.

See the two examples of input on page 32 for more information.

The first positional parameter passed to the ALERT-initiated EXEC is always the EXEC na
The characters that you enter in theRSP column ALERT Detail Display to schedule the EXEC
are also passed. However, the position that those characters have depends on whether
you use optional parameters.

To read about ... Refer to ...

How to actually invoke the EXEC Chapter 3, the “ALERT Management Facility” in
theMAINVIEW AutoOPERATOR Basic
Automation Guide

About coding an ALERT with an
associated EXEC

Chapter 6, “Using the IMFEXEC Command
Statements” in this book
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR31

d

Example of input without parameters

For example, the user enters:

DEF

in theRSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:

Example of input with parameters

For example, the user enters:

DEF

in theRSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:

Positional
parameter

Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 DEF (contents of
RSP column)

Is the (up to) three character string the user
enters in theRSP column of the ALERT
DETAIL DISPLAY panel to actually invoke
the ALERT

3 through n Text of the ALERT Are the actual words of the ALERT asoociate
with the invoked EXEC

n + 1 The period pads the positional parameter

Positional
parameter

Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 x Is the first parameter passed to the EXEC

3 y Is the second parameter passed to the EXEC

4 z Is the third parameter passed to the EXEC

5 DEF (contents of
RSP column)

Is the (up to) three character string the user
enters in theRSP column of the ALERT
DETAIL DISPLAY panel to actually invoke
the ALERT

6 through n Text of the ALERT Are the actual words of the ALERT associated
with the invoked EXEC

n + 1 The period pads the positional parameter
32 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

JOB

ing
Example 1: ALERT-Initiated EXEC without Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an EXEC named SET
without any optional parameters:

"IMFEXEC ALERT KEYSETUP 'SETUP BAB031 . . . JOB 00395' EXEC(SETJOB)",
 "QUEUE(ABC) PRI(INFO)"

The ALERT generated by this statement looks like:

RSP TIME IND ORIGIN --
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in theRSP column. The positional
parameters passed to the ALERT-initiated EXEC in this example are defined in the follow
table.

Positional
Parameter

Variable
Name

Variable Passed Description of Variable Passed

1 EXECNAME SETJOB Is the name of the EXEC

2 RSP OUT (contents
of RSP column)

Is the (up to) three character string the user enters in theRSP
column of the ALERT DETAIL DISPLAY panel to actually
invoke the ALERT

3 ATEXT1 SETUP First word of ALERT text

4 ATEXT2 BAB031 Second word

5 ATEXT3 . Third word

6 ATEXT4 . Fourth word

7 ATEXT5 . Fifth word

8 ATEXT6 JOB Sixth word

9 ATEXT7 00395 Is the last word of the ALERT text

10 . . The period pads the positional parameters

/* REXX EXEC */
ARG EXECNAME RSP ATEXT1 ATEXT2 ATEXT3 ATEXT4 ATEXT5 ATEXT6 ATEXT7 .
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(WRITE MESSAGE FOR SETUP) */
/*--*/

"IMFEXEC MSG 'ALERT "EXECNAME" IS REQUESTING SETUP FOR JOB "ATEXT7"'"

EXIT

Figure 3. ALERT-Initiated REXX EXEC Example 1
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR33

JOB

ing
Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for, translates into:

ALERT SETJOB IS REQUESTING SETUP FOR JOB 00395

Example 2: ALERT-Initiated EXEC with Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an EXEC named SET
with the optional parameter IMMEDIATE:

"IMFEXEC ALERT KEYSETUP 'SETUP BAB031 . . . JOB 00395'",
 "EXEC('SETJOB IMMEDIATE')"

The ALERT generated by this statement looks like:

RSP TIME IND ORIGIN --
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in theRSP column. The positional
parameters passed to the ALERT-initiated EXEC in this example are defined in the follow
table.

Table 4. Example ofALERT-initiated EXEC Parameters and Variables

Positional
Parameter

Variable
Name

Variable Value Description of Variable Value

1 EXECNAME SETJOB Is the name of the EXEC

2 TIME IMMEDIATE Is the optional parameter passed to the EXEC to specify when
the job should be run

3 RSP OUT (contents
of RSP column)

Is the (up to) three-character string the user enters in theRSP
column of the ALERT DETAIL DISPLAY panel to actually
invoke the ALERT

4 ATEXT1 SETUP First word of ALERT text

5 ATEXT2 BAB031 Second word of ALERT text

6 . . The period pads the positional parameters

ARG EXECNAME TIME RSP ATEXT1 ATEXT2 .
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) DOC DISP(YES) */
/* AUTHOR(B&B) /* DOC DESC(WRITE MESSAGE FOR SETUP & TIME) */
/*--*/

"IMFEXEC MSG
 'ALERT "EXECNAME" IS REQUESTING SETUP FOR "ATEXT2" AT "TIME"'"
EXIT

Figure 4. ALERT-Initiated REXX EXEC Example 2
34 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for, translates into:

ALERT SETJOB IS REQUESTING SETUP AT IMMEDIATE FOR JOB 00395
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR35

user
and

nst a

r-

ole.
n.

:

is
User-Initiated REXX EXECs

A user-initiated EXEC (also known as a command-initiated EXEC) is scheduled when a
enters the EXEC name from the BBI terminal session (TS) command line with the comm
prefix of % or 4.

You also can schedule a user-initiated EXEC by issuing a MVS MODIFY command agai
BBI PAS subsystem (BBI-SS PAS); for example:

F SYSB,%EXECB

Finally, you also can use the AutoOPERATOR EXEC Manager application to issue a use
initiated EXEC. Refer to theMAINVIEW AutoOPERATOR Basic Automation Guide for more
information.

Potential Use

Use user-initiated EXECs when you want to schedule an EXEC from a TS or an MVS cons
The example in this section shows how to schedule an EXEC named START for executio
This EXEC is used to vary a VTAM node online.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character EXEC name (in this case,START). Any of
the positional parameters are optional.

Example of input:

To use the EXEC named START, enter the following command on any TS command line

%START termid

wheretermid is the name of the VTAM node you specify to bring online. For example, th
termid value could be BS4000. The command would look like:

%START BS4000

Example

The following shows an example of an EXEC that would be scheduled:

/* REXX EXEC */
ARG START TERMID .
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*--*/

"IMFEXEC CMD #VARY NET,ACT,ID="TERMID""

EXIT

Figure 5. User-Initiated REXX EXEC Example
36 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

shown

y a
nd
The positional parameters passed to the ARG statement of the user-initiated EXEC are
in the following table:

Describing the Example

In this example, the IMFEXEC CMD statement is used to issue a VTAM command to var
terminal online. Refer to “CMD (Issue IMS Command without Response)” on page 315 a
“CMD (MVS Version with Response through X-MCS Consoles)” on page 310 for more
information about the IMFEXEC CMD command and MVS commands.

Positional
Parameter

Variable
Name

Value Passed Description of Value Passed

1 START START Is the EXEC name

2 TERMID BS4000 Is the name of the terminal

3 . . The period pads the positional
parameters
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR37

nd

s

Time-Initiated REXX EXECs

Time-initiated EXECs are invoked when:

• An EXEC name is specified in the AutoOPERATOR TIMEXEC application.

These EXECs are invoked by AutoOPERATOR Timer Facility when the user-defined
time condition occurs. Refer to the section called “TIMEXEC Application” in the
MAINVIEW AutoOPERATOR Basic Automation Guide.

• A BLK request is issued

• An EXEC-initiated EXEC uses the CALLX service

For example, by coding:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00 STOP=16:00:00
 I=01:00:00"

EXEC @HOURLY will execute every hour, beginning at 6:00 am and
ending at 4:00 pm.

• The @TIMER sample solution is used (refer to theMAINVIEW AutoOPERATOR Basic
Automation Guide for more information).

Potential Use

Any production environment that follows a daily schedule requires specific jobs to start a
stop at the same time every day. Using the AutoOPERATOR Timer Facility, you can have
EXECs automatically scheduled at specific times to perform automation tasks or react to
certain activities.

Parameters Passed to the EXEC

Time-initiated EXECs have specific information passed to the 11 positional parameters a
described in this table.

Table 5. Time-Initiated EXEC Parameters and Values

Positional
Parameter

Description of Parameter Value

1 EXECNAME - 1 to 8 character name of this EXEC.

2 1- to 8-character target name.

3 AutoOPERATOR for IMS only.

This is the 4-character IMS ID used by AutoOPERATOR for IMS only. This variable must be
coded; however, its value is unpredictable for AutoOPERATOR for CICS and AutoOPERATOR
for MVS.

4 4-character BBI-SS PAS Subsystem identifier.

5 Current Gregorian date in mm/dd/yy format.
38 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ss.

ual

 is

at of
/VS

set
6 The time the EXEC is scheduled. The time is in the hours:minutes:seconds format of hh:mm:

This is the time when the timer-driven request interval expires. In a congested system, the act
EXEC execution could be delayed because of MVS dispatching priorities.

7 Day of the week is a digit, where 1 is Monday, 2 is Tuesday, 3 is Wednesday, 4 is Thursday, 5
Friday, 6 is Saturday, and 7 is Sunday.

8 Current Julian date in yyddd format.

9 MAINVIEW AutoOPERATOR for IMS only.

Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.

This is the elapsed time that IMS/VS has been active in the total hours:minutes:seconds form
hhh:mm:ss. This is the elapsed control region job time, not the elapsed time since the first IMS
checkpoint. If IMS/VS is not active, the value is 000:00:00.

10 MAINVIEW AutoOPERATOR for IMS only.

Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.

The IMS/VS restart type, as follows:

ERE Emergency restart

WARM Warm restart

COLD Cold restart

INACT IMS/VS is not active. This value is also passed during:

– IMS/VS initialization until the first checkpoint is taken

– IMS/VS termination after the shutdown checkpoint is issued

It remains INACT until IMS/VS restarts and the first checkpoint is taken.

11 MAINVIEW AutoOPERATOR for IMS only.

Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.

A 1- to 5-digit number for the numer of times the EXEC has been invoked. The P10 value is re
to 1 every time the P9 status changes.

Table 5. Time-Initiated EXEC Parameters and Values (Continued)

Positional
Parameter

Description of Parameter Value
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR39

mple,
se
ROC

hown
It is not always necessary to identify all 11 parameters on the PROC statement. For exa
an EXEC may only require positional parameter eight (the current Julian date). In this ca
only the first eight parameters need to be coded on the PROC statement. The required P
would be:

ARG SUBJOB P1 P2 P3 P4 P5 P6 P7 P8

Example

The positional parameters passed to the ARG statement of the time-initiated EXEC are s
in the following table:

/* REXX EXEC */
ARG EXECNAME
 /*---*/
 /*EXEC Description: This sample EXEC displays the status of your*/
 /* system. */
 /*---*/
 /*Positional Parameter Count: */
 /* */
 /*11 The total number of ARG parameters. This value will*/
 /* always be 11 for a time-initiated EXEC. */
 /* */
 /*Symbolic Parameter Definitions: */
 /* */
 /*SSTATUS The BBPROC member name for this EXEC. */
 /* */
 /*---*/

"IMFEXEC CMD .D V,ALL" /* Displays all shared variables */
"IMFEXEC CMD .D L,ALL" /* Displays of all BBI-SS PAS/BBI-SS PAS */
Links */
"IMFEXEC CMD .D R" /* Displays remote users */
"IMFEXEC CMD .D A" /* Displays ACTIVE STATUS */

EXIT

Figure 6. Time-Initiated REXX EXEC Example

Positional
Parameter

Variable
Name

Value Passed Description of Value Passed

1 EXECNAME SSTATUS Is the name of the EXEC invoked
by the timer facility
40 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

be
ent

XEC

XEC
tput
Describing the Example

This EXEC uses the IMFEXEC CMD command to issue various BBI control commands to
logged to the BBI -SS PAS Journal. The ARG statement is written as the first REXX statem
of the EXEC named SSTATUS by specifying:

ARG EXECNAME

where:

• ARG instructs REXX to process the arguments passed to this REXX EXEC

• EXECNAME is a variable which contains the name of the EXEC

There is only one positional parameter in this statement, the variable containing the E
name. The remaining 10 positional parameters are ignored.

This time-initiated EXEC is scheduled to take a snapshot of the BBI environment. The E
uses only one input variable for this task and it issues four BBI control commands so the ou
is recorded in the BBI-SS PAS Journal. This allows you to review the data.
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR41

,
along

alue
EXEC-Initiated REXX EXECs

An EXEC-initiated EXEC is scheduled when the IMFEXEC SELECT command is coded
specifying the EXEC parameter. The EXEC parameter names the EXEC to be scheduled
with any parameters; for example:

"IMFEXEC SELECT . . . EXEC(execname)"

whereexecname is the name of any EXEC to be scheduled.

Potential Use

Use an EXEC-initiated EXEC when you want to:

• Invoke a common EXEC that might be used by several other EXECs

• Schedule another EXEC and have it execute asynchronously

EXEC-initiated EXECs can be scheduled to execute either synchronously or
asynchronously by the calling EXEC. For more information, see“Invoking EXECs
Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 .

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any following
positional parameter are optional.

Example of input:

The command:

"IMFEXEC SELECT EXEC(START BS4000)"

schedules the EXEC called START for execution. An optional parameter containing the v
BS4000 is passed to START as input.

Example

This example shows the calling EXEC that schedules the called EXEC named START:

/* REXX EXEC */
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(CALL ACTIVATE EXEC) */
/*--*/

"IMFEXEC SELECT EXEC(START BS4000)"

EXIT
42 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

g

 and
This example shows the called EXEC:

The positional parameters passed to the EXEC-initiated EXEC are shown in the followin
table:

Describing the Example

The called EXEC in this example receives a parameter from the calling EXEC (BS4000)
uses that value to vary a VTAM node active with the IMFEXEC CMD command. Refer to
“CMD (MVS Version with Response through X-MCS Consoles)” on page 310 for more
information about the IMFEXEC CMD statement and MVS commands.

/* REXX EXEC */
ARG START TERMID .
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*--*/

"IMFEXEC CMD #VARY NET,ACT,ID="TERMID""

EXIT

Figure 7. EXEC-Initiated REXX EXEC Example

Positional
Parameter

Variable
Name

Value
Passed

Description of Value Passed

1 START START Is the name of the EXEC

2 TERMID BS4000 Is the name of the terminal to be started online

3 . . The period pads the positional parameters
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR43

C.

ot an
hen

to

se

t
fer
.

Externally Initiated REXX EXECs

Externally initiated EXECs are scheduled by:

• A job step that executes the IMFSUBEX program

• A user-written program

• A TSO user The EXEC that IMFSUBEX schedules is called an externally initiated EXE

Potential Use

There are many instances where full automation requires the completion of a task that is n
EXEC and is running outside of the BBI-SS PAS. A database backup is one example. W
the backup completes, you can use an externally initiated EXEC to notify AutoOPERATOR
schedule any further actions.

Two possible ways to do this are through writing a Rule and through IMFSUBEX. If you u
the Rule Processor application to write Rules, then:

1. Create a message with a unique message-ID

2. Send the message to the operator's console

3. Create a Rule to process the message

If you use the IMFSUBEX facility, you can directly schedule an EXEC to take subsequen
automation actions. For more information for how to invoke externally initiated EXECs, re
to “Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX” on page 93

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any following
positional parameter are optional.

Example of input:

The following JCL shows how the subroutine IMFSUBEX schedules an EXEC named
BACKDONE for execution.

//STEPX EXEC PGM=IMFSUBEX,
// PARM='SS(SSA1) EXEC(BACKDONE SYST1)'
44 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

g

r to

 in the
Example

The following EXEC is scheduled:

The positional parameters passed to the EXEC-initiated EXEC are shown in the followin
table:

Describing the Example

The EXEC namedBACKDONE is scheduled in a target subsystem called SSA1. A single
parameter is passed (SYST1) which is a DASD volume serial number. The BACKDONE
EXEC receives a volume serial number of a DASD from the second positional paramete
IMFSUBEX.

The BACKDONE EXEC first sends a message to two TSO users, SYSP1 and SYSP2,
informing them that the volume backup has been successful and then places a message
BBI-SS PAS Journal recording a successful operation.

/* REXX EXEC */
ARG BACKDONE V1 .
/*--*/
/* DOC GROUP(MVS) FUNC(BKUP) CODE(BK) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SEND NOTIFY/LOG FOR A SUCCESSFUL BACKUP) */
/*--*/

"IMFEXEC CMD #SE 'VOLUME "V1" SUCCESSFULLY
DUMPED',LOGON,USER=(SYSP1,SYSP2)"
"IMFEXEC MSG 'VOLUME "V1" SUCCESSFULLY DUMPED'"

EXIT

Figure 8. Externally Initiated REXX EXEC Example

Positional
Parameter

Variable
Name

Value Passed Description of Value Passed

1 BACKDONE BACKDONE Is the name of the EXEC invoked

2 V1 SYST1 Is the name of the volume serial number
of a DASD

3 . . The period pads the positional
parameters
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR45

sages.
t
r

or

n
wing

e

:

e

End-of-Memory–Initiated REXX EXEC

Use the End-of-Memory EXEC to ensure that critical address spaces do not terminate
unnoticed.

Potential Use

Normally, address space termination can be monitored using standard MVS and JES mes
However, there are situations when monitoring based on these messages is not sufficien
because an address space may terminate without producing the expected messages. Fo
example, the expected termination messages may not be produced if the MVS FORCE
SYSPROG EXIT command is used or when an initiator abends.

The End-of-Memory EXEC allows AutoOPERATOR to monitor address space terminatio
regardless of how the address space is terminated. This EXEC is scheduled for the follo
things when the associated events occur:

Batch jobs Only when the initiator terminates

TSO users When any TSO user is terminated

Started tasks When any started task is terminated

There is only one End-of-Memory EXEC for each AutoOPERATOR subsystem. Each tim
one of the above mentioned events occurs, AutoOPERATOR automatically schedules an
EXEC named IMFEOM if it exists in the SYSPROC concatenation.

Parameters Passed to the EXEC

Two parameters are passed to the End-of-Memory EXEC.

• The first parameter contains the fixed string of *EOM*

• The second parameter contains a character string which can have one of two values

Parameter value Description

NORMAL Indicates normal address space termination

ABNORMAL Indicates address space was terminated by passing it to RTM

This may happen when using the SYSPROG EXIT command or th
MVS FORCE command. This is not an indication that the address
space abended with a system or user abend code.
46 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

d

Example

This first example shows an EXEC called STRT that is invoked by a Rule (a Rule-initiate
EXEC). The Rule is fired when the JES2 message $HASP373 is issued for jobname
PRODSTC: $HASP373 indicates that the job has started.

The second EXEC, IMFEOM, is automatically scheduled when any started task or TSO
address space terminates or when a batch initiator abends.Describing the Example

/*REXX EXEC */
/*--*/
/* THIS EXEC IS DRIVEN FROM JES2 MESSAGE, $HASP373, FOR STC */
/* PRODSTC ONLY */
/* */
/* EXEC DESCRIPTION: SET VARIABLE "PRODSTKN" TO STOKEN OF PRODSTC */
/*--*/
PRODSTKN = IMFSTOKN
"IMFEXEC VPUT PRODSTKN"

/* REXX */
ARG IMFEOM STATUS .
/*--*/
/* THIS EXEC IS DRIVEN FROM END OF MEMORY EXIT */
/* */
/* EXEC DESCRIPTION: DETERMINE IF ADDRESS SPACE TERMINATING IS */
/* "PRODSTC". IF SO, INFORM THE OPERATOR. */
/*--*/

"IMFEXEC VGET PRODSTKN"
IF IMFSTOKN = PRODSTKN THEN DO
 PRODSTKN =’’
 "IMFEXEC VPUT PRODSTKN"
 IF STATUS = ABNORMAL THEN ,
 "IMFEXEC WTO 'PRODSTC ENDED ABNORMALLY'"
END

Figure 9. End-of-Memory—Initiated EXECs Example
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR47

that
the
ed

eing

the
h and
-

ble
When the STRT EXEC is scheduled, the local variable IMFSTOKN contains an identifier
uniquely identifies the PRODSTC started task. Since this variable only exists for the life of
EXEC, STRT saves the IMFSTOKN value in the shared variable pool so that it can be us
subsequently by the IMFEOM EXEC.

When the IMFEOM EXEC is scheduled, IMFSTOKN refers to the address space that is b
terminated. The IMFEOM EXEC compares IMFSTOKN to the PRODSTKN value saved
previously by the EXEC named STRT. If the values do not match, IMFEOM exits because
address space that is terminating is not one that is being monitored. If the values do matc
the parameter passed to IMFEOM indicates abnormal termination, then a WTO (write-to
operator) is issued to notify the operator.

Refer to “TSO Variables Supplied by AutoOPERATOR” on page 54 for more information
about AutoOPERATOR-supplied variables.

Important

If this procedure will be used for more than one address space, you should use a varia
name other than IMFSTOKN in the shared variable pool or else the value IMFSTOKN
might be overridden by the other procedures.
48 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

l to
her
, and

, in

nd

nt

y

Chapter 4. Using Variables in REXX EXECs

This chapter discusses:

• Variables and variable pools available to AutoOPERATOR REXX EXECs

• Manipulating information between the variable pools

Overview

Complex EXECs must be able to do much more than issue commands and return contro
their callers. An EXEC must be able to request information from AutoOPERATOR (and ot
products), compare the information, compare the time elapsed since the last observation
effect changes that other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily or permanently
a simple manner so that it can be accessed later by the same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds of variables a
variable pools.

Variable Pool Name Description

TSO variables Exist for the life of the EXEC.

This chapter lists:

• AutoOPERATOR–supplied TSO variables
• Modifiable TSO variables
• Non-modifiable TSO variables

LOCAL variables LOCAL variables are stored in a pool that can be accessed only by the curre
EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).

AutoOPERATOR passes information to an EXEC in this pool. It is also used b
AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.
Chapter 4. Using Variables in REXX EXECs 49

and

riable
AutoOPERATOR also provides four IMFEXEC commands for defining, saving, deleting,
retrieving variables using the different variable pools:

VDCL Defines map lists for variables

VPUT Save variables to a pool

VPUTL Saves long variables (up to 32k and 30 characters long) to a pool

VGET Retrieve variables from a pool

VGETL Retrieves long variables (up to 32k and 30 characters long) to a pool

VDEL Remove variables from pools

VDELL Removes long variables (up to 32k and 30 characters long) to a pool

Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of the same EXEC or other EXECs.

The use of the expression “GLOBAL variables” in this book refers to both
SHARED and PROFILE variables.

SHARED variables

SHARED variables are stored in a
pool that is accessible to all EXECs in
the BBI-SS PAS . They can be read,
modified, created and deleted by any
number of EXECs or Rules. Since
EXECs can access them
simultaneously, their access should be
serialized (see IMFEXEC VENQ and
VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.

AutoOPERATOR creates a number of
SHARED variables that contain
system-specific information.
SHARED variables are accessible to
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.

This chapter lists the
AutoOPERATOR-supplied variables.

PROFILE variables

PROFILE variables are similar to
SHARED variables with the exception
that they are persistent across IPLs and
their contents are never lost unless
explicitly deleted.

PROFILE variables are not accessable
from Rules.

Note: Variable names must be at least 1 and not more than 32 characters in length. The contents of any va
cannot exceed 256 characters.

Variable Pool Name Description
50 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 not

a

t.
long.

cters.
s.
been

r
rt
limit
ould

e

ls

t

Although three of these commands are similar to three ISPF Dialog commands, they are
identical. Refer to “Using the IMFEXEC Statements” on page 237 for coding details and
carefully review the differences before using them.

LOCAL, SHARED and PROFILE variables (in this order) impose a cost to processing
overhead. This means that the system uses more resources to preserve the contents of
PROFILE variable than for a LOCAL variable.

LOCAL, SHARED and PROFILE pool variables each come in two flavors: long and shor
Short variables are limited to 255 characters in length and their names to 32 characters
You cannot manipulate a variable with longer content using the IMFEXEC
VGET/VPUT/VDEL statements.

Long variables can be up to 32K in length and have a variable name length up to 30 chara
These variables are manipulated using the VGETL/VPUTL/VDELL IMFEXEC statement
Long and short variables are completely independent from each other. A variable that has
set with the VPUT statement cannot be read with the VGETL statements.

Long variables impose greater processing overhead than short variables. If your code, fo
example, has to remember only the names of persons, you should always choose a sho
variable. If, however, a variable can foreseeably grow in length beyond the 255 character
(say, you might want to concatenation hundreds of volsers into one variable) then you sh
use the long variable format.

In addition:

• REXX EXECs cannot use any variables that have not been explicitly retrieved into th
function pool using IMFEXEC VGET(L) statements.

• A variable with the same name but of different type (long or short) or in different poo
(LOCAL/SHARED/PROFILE) can contain completely separate values.

• A LONG variable (set with the VPUTL statement) cannot be retrieved with a short
variable operation (VGET) even if the contents of the explicit LONG variable does no
exceed the 255 character limit.

For example:

Fred='This is a test'
"IMFEXEC VPUT FRED"
"IMFEXEC VGETL FRED"

These statements yield:

Fred='My name is Fred'
"IMFEXEC VPUT FRED"

Fred="My name is Flintstone"
"IMFEXEC VPUTL FRED"

In this case, the variableFred exists both as a long and a short variable, with different
contents.
Chapter 4. Using Variables in REXX EXECs 51

The following table lists where you can find more information about variable pools in this
chapter.

To read more about... See page...

TSO pools 53

Using TSO modifiable variables 61

Using TSO non-modifiable variables 61

LOCAL pools 61

SHARED pools 63

PROFILE pools 66

Saving data to a pool 67

Retrieving data from a pool 69

Sharing variables between EXECs 70
52 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

. The

he
he
e

ent

d

Using a TSO Variable Pool

A TSO variable pool is created when an EXEC starts and is deleted when the EXEC ends
variables in the TSO variable pool can be created in one of two ways:

• Assigning a variable:

For example, the statement:

I=1

creates a TSO variable I with a value of 1 in the pool.

• Using IMFEXEC VGET commands

To access a variable from the LOCAL, SHARED, or PROFILE pools, you must use t
IMFEXEC VGET command in the EXEC and move the variable into the TSO pool. T
REXX EXEC can perform operations on the value of the variable only when it is in th
TSO variable pool. Refer to “VGET” on page 390 for information on coding an
IMFEXEC VGET statement.

TSO variables also exist as:

• AutoOPERATOR-supplied variables

• TSO-supplied modifiable and non-modifiable control variables

• Variables that are substituted into the positional parameters on a REXX ARG statem

Refer to “Passing Data” on page 24 for more information about the ARG statement.

The following sections list the AutoOPERATOR-supplied variables and the modifiable an
non-modifiable variables supplied by TSO.
Chapter 4. Using Variables in REXX EXECs 53

TSO Variables Supplied by AutoOPERATOR

The following lists the TSO variables provided by AutoOPERATOR:

Variable Name Description Applicable
specifically for
which EXEC
type

IMFACCTG Contains all accounting fields for a particular event. The accounting
field values are separated by blanks. Maximum length is 142.

Rule-initiated
EXECs only

IMFALID The alarm ID associated with an alarm created by MainView Alarm
Manager.

Rule-initiated
EXECs only

IMFALPRI The user-assigned priority of the alarm. Possible values are:

1 Critical
2 Major
3 Minor
4 Warning
5 Informational
6 Clearing

Rule-initiated
EXECs only

IMFALQID The name of the queue to which the alarm was assigned. Rule-initiated
EXECs only

IMFALRM Contains either Y (sound an alarm) or N (do not sound an alarm). Rule-initiated
EXECs only

IMFCC The condition code set for each IMFEXEC statement.

IMFCC = 00 Normal completion.
IMFCC = 04 Warning condition, not necessarily an error.
IMFCC = 08 Exception condition or command not found.
IMFCC = 12 Error condition. Did not complete operation.
IMFCC = 16 Error condition.
IMFCC = 20 Severe error condition.

Refer to the specific IMFEXEC statement for the exact codes.

All EXEC types

IMFCNTXT The name of the context of the alarm. Rule-initiated
EXECs only

IMFCONID Console ID of the message, if message was issued for a specific
console. Valid only for messages captured through the Rule Processor
application.

Rule-initiated
EXECs only
54 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFCONNM Console name to which the WTO was issued. Valid only for MVS SP4
and above.

IMFCONNM may be used to identify the origin of an MVS command.
The contents of the variable (by origin) are:

Origin IMFCONNM Value

Rule Internal
SDSF TSO user ID that issued the command
Console Console Name where the command was issued

Rule-initiated
EXECs only

IMFDAY Three-character day of the week: MON, TUE, WED, THU, FRI, SAT,
SUN.

All EXEC types

IMFDDNAM Contains the DDNAME specified by the user to generate an external
events (EXT event type). EXT events are generated by using the
SUBSYS= parameter on a DD statement in JCL. Refer to “EXT
Events” in theMAINVIEW AutoOPERATOR Basic Automation Guide
for more information about EXT events.

Rule-initiated
EXECs only

IMFDOMID The DOM ID associated with a WTO that initiated an EXEC. Rule-initiated
EXECs only

IMFEID The EXEC identification number, 1 to 99999, assigned to each
execution by the EXEC manager.

The EXEC MANAGER will not assign the same number to two
EXECs in the running or deferred queues, except an EXEC selected
with WAIT=(YES) has the same IMFEID as the calling EXEC.

All EXEC types

IMFENAME Name of EXEC. All EXEC types

IMFEROUT A list of routing codes that were assigned to the WTO that triggered the
EXEC, such as1 2 5 9. This variable is defined only for EXECs
initiated as a result of a WTO. IMFEROUT supports return codes up to
128.

Rule-initiated
EXECs only

Variable Name Description Applicable
specifically for
which EXEC
type
Chapter 4. Using Variables in REXX EXECs 55

IMFETYPE The event type that caused the Rule to fire. If a Rule invokes an EXEC,
IMFETYPE contains the value from the Rule that invoked the EXEC.
Possible values for IMFETYPE are as follows:

• MSG
• CICS
• CMD
• JRNL
• IMS
• ALRT
• DB2
• TIME
• ALRM
• EXT
• VAR
• MQS
• JES3

For more information about these event types, refer to “Describing
Events” in theMAINVIEW AutoOPERATOR Basic Automation Guide.

Rule-initiated
EXECs only

IMFEVFRD The number of Rules that have fired for a specific event. Rule-initiated
EXECs only

IMFGROUP The RACF group ID for the address space that issued the message. The
group ID is taken from the GROUP= parameter on the job card.

Rule-initiated
EXECs only

IMFJCLAS Job class name from the job card of the batch job that has generated the
message.

Rule-initiated
EXECs only

IMFJNUM The JES job number of the job, STC, or TSU that issued the message. It
is a fixed length five-digit or a variable length value depending on the
setting of the IMFJNUM option in member AAOPRMxx. IMFJNUM
can also contain blanks (one or five characters as appropriate) for
WTOs that are issued by non-JES tasks, such as a STC started under
MSTR.

When IMFJNUM=5 (the default setting) and the job number is greater
than 99,999 (for example, T0100000, S0999999, etc.) are encountered,
IMFJNUM will be null (zero length).

Rule-initiated
EXECs only

IMFJTYPE Type of job issuing message:

J Batch Job
T TSO User
S Started Task

Rule-initiated
EXECs only

IMFLPROD The name of the product associated with the alarm. Rule-initiated
EXECs only

Variable Name Description Applicable
specifically for
which EXEC
type
56 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFLTYPE A literal value associated with the alarm; possible values can be
START or STOP.

Rule-initiated
EXECs only

IMFLUSER The user-specified user ID associated with the alarm. Rule-initiated
EXECs only

IMFMPFAU Contains the value of a message from the MPF AUTO keyword.

Use this variable to determine the value of the MPF AUTO keyword for
a message.

Rule-initiated
EXECs only

IMFMPFSP Contains the value of a message from the MPF SUP keyword.

Use this variable to determine the value of the MPF SUP keyword for a
message.

Rule-initiated
EXECs only

IMFMSTYP Contains a 2-character variable for the message type. This variable is
only for the CMD and MSG event types. Valid values for the first
character are:

N A regular WTO
W A regular WTOR
M A major line of a multi-line WTO (MLWTO)

Valid values for the second character are:

C Command
R Command response

Rule-initiated
EXECs only

IMFNOL Number of lines in WTOR that caused the EXEC to be invoked or the
number of lines returned from a service.

This value is limited to 9999 lines for Rule-initiated EXECs and for
data returned by IMFEXEC CMD with response.

All EXEC types

IMFOASID Originating Address Space ID (ASID) of the message. For IMFEOM, it
is set to the ASID that is being terminated. For ORIGIN=JRNL, it is set
to the subsystem ASID name.

Rule-initiated
EXECs only

IMFODATE Date when the message or alarm was issued. Valid only for messages
captured through the Rule Processor.

The date format is in Julian calendar format; for example: 95.100,
where:

95 Are the last two digits of the year 1995.
100 Is the 100th day of the year. In a non-leap-year, this is equal to

March 10.

Rule-initiated
EXECs only

IMFODESC A list of descriptor codes assigned to the WTO that triggered the
EXEC, such as 2 11. This variable is defined only for EXECs initiated
as a result of a WTO.

Rule-initiated
EXECs only

Variable Name Description Applicable
specifically for
which EXEC
type
Chapter 4. Using Variables in REXX EXECs 57

IMFOJOB For WTOs, IMFOJOB contains the job or started task that issued the
WTO.

For CICS messages, IMFOJOB contains the CICS region name that the
subsystem issued the message for, which is useful when monitoring
multiple CICS regions with one BBI-SS PAS .

For DB2 messages, IMFOJOB contains the DB2 region name that the
subsystem issued the message for, which is useful when monitoring
multiple DB2 regions with one BBI-SS PAS.

For IMS messages, IMFOJOB contains:

• The IMS job name for IMS MTO messages

• The IMS job name for commands (and their responses) entered
from AutoOPERATOR

• The originating LTERM for commands (and their responses)
entered from an IMS LTERM

For BBI-SS PAS Journal messages issued by an EXEC, IMFOJOB
contains the user ID of the person who invoked the EXEC.

For Journal messages issued by MainView for DB2, IMFOJOB
contains the name of the DB2 Region for which the message was
issued.

For Time-initiated EXECs, IMFOJOB contains the user ID associated
with that EXEC. This may be the user ID passed on the command or it
may default to the value of the AUTOID keyword specified in
BBPARM member BBIISP00.

All EXEC types

&IMFXOJOB Contains the name of the original job or started task that requested the
WTO to be issued by another address space.

The contents of IMFXOJOB are only meaningful if the WTO is issued
by another address space, otherwise its contents are identical to
IMFOJOB.

All EXEC types
initiated by a
MSG type rule

IMFOQID CICS transient data queue name if source of message is CICSTD. Rule-initiated
EXECs only

Variable Name Description Applicable
specifically for
which EXEC
type
58 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFORGN Origin of EXEC-Job name/USERID causing EXEC to be invoked.

For EXECs triggered by the Rule Processor, IMFORGN contains the
BBI-SS PAS ID. This is so that EXECs invoked on remote systems that
are triggered by message filters on the local system can use authorized
services, such as SYSPROG services.

Security checking is done against a BBPARM member in the remote
system with the name of the BBI-SS PAS ID. See “Determining the
Origin of a Command or EXEC” on page 91 for a discussion about
using IMFORGN to determine the origin of an EXEC across BBI-SS
PASs.

All EXEC types

IMFORGSS The BBI subsystem ID of the BBI-SS PAS that originated an EXEC. If
originated locally, IMFORGSS is the same as QIMFID.

See “Determining the Origin of a Command or EXEC” on page 91 for a
discussion about using IMFORGN to determine the origin of an EXEC
across BBI-SS PASs.

All EXEC types

IMFOROUT A list of routing codes that were assigned to the WTO that triggered the
EXEC, such as1 2 5 9. This variable is defined only for EXECs
initiated as a result of a WTO. IMFOROUT supports return codes up to
16.

Rule-initiated
EXECs only

IMFOTIME Time when the message was issued. Valid only for messages (also
known as events) captured through the Rule Processor.

The valid form of the variable is hh:mm:ss for all Rule event types
except for the MSG event type. For MSG events, the valid form of the
variable is hh.mm.ss.

For the ALRM events, the time represents the time the exception
occurred.

Rule-initiated
EXECs only

IMFPCMD The PCMD associated with the alarm. Rule-initiated
EXECs only

IMFPOST A 1 to 255 character code received from an EXEC that issues the
IMFEXEC POST command against an ECB with the same name that
the current EXEC is waiting on.

All EXECs

IMFPRIO Contains the dispatching priority of the currently running EXEC after
the IMFEXEC CHAP command has been issued.

All EXECs

IMFRC The return code set by a called EXEC with WAIT(YES) or the return
code set by a non-AutoOPERATOR command or program. Refer to
“Understanding Completion Codes for EXEC-Initiated EXECs with
WAIT(YES) and User Written Programs” on page 354 for a more
detailed discussion.

EXEC-initiated
EXECs only

Variable Name Description Applicable
specifically for
which EXEC
type
Chapter 4. Using Variables in REXX EXECs 59

s

IMFREPLY Reply ID of the WTOR message. Valid only for messages captured
through the Rule Processor.

Rule-initiated
EXECs only

IMFRLFRD The number of times a Rule was fired. Rule-initiated
EXECs only

IMFRLID The Rule identifier that fired an EXEC. Rule-initiated
EXECs only

IMFRLMAT The number of times the Rules search criteria was matched. Rule-initiated
EXECs only

IMFRLSET The name of the Rule Set the Rule belongs to. Rule-initiated
EXECs only

IMFRLSTA The Rule status:

TEST Indicates that the status of the Rule that invoked the EXEC
is in an TEST state.

ACTIVE Indicates that the status of the Rule that invoked the EXEC
is in ACTIVE state.

Rule-initiated
EXECs only

IMFRUSER The RACF user ID for the address space that issued the message. The
user ID is taken from the USER= parameter on the job card.

Rule-initiated
EXECs only

IMFSCOPE The name of the scope associated with the alarm. Rule-initiated
EXECs only

IMFSTOKN The Address Space STOKEN. This name is unique for the life of the
IPL.

Rule-initiated
EXECs or
End-of-Memory
initiated EXECs

IMFSYSID Originating job name

For CICS messages, IMFSYSID contains the BBI started task name.

Rule-initiated
EXECs only

IMFTEXT The character text that caused the EXEC to be scheduled. All EXEC type

IMFTOKEN Token ID of the message. Same as hardcopy ID. Used to attach
MLWTO Minor/Major Lines. Valid only for messages captured
through the Rule Processor.

Rule-initiated
EXECs only

IMFVIEW The name of the view associated with the alarm. Rule-initiated
EXECs only

IMFWTDOM The DOM ID associated with a WTO issued by IMFEXEC WTO
command.

All EXEC types

Variable Name Description Applicable
specifically for
which EXEC
type
60 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

s and
XX
 in

ad

xed

a

TSO Modifiable Control Variables

AutoOPERATOR REXX EXECs support the following special REXX variables that are
modifiable.

TSO Non-Modifiable Control Variables

The TSO/E REXX language itself does not provide the non-modifiable variables that the
CLIST language does. Instead, built-in and external functions are used to obtain the value
assign them to variables. Refer to the section describing “Using TSO/E Functions for RE
EXECs” on page 19 and “Using TSO/E REXX Commands in REXX EXECs” on page 20
this manual.

Using LOCAL Variables and Pools

This pool is created when an EXEC is assigned to a thread and is deleted when the thre
terminates. Variables in this pool are created by:

• Using the IMFEXEC command VPUT to move TSO variables into the LOCAL pool

 IMFWTCON Created when a reply is successfully received. The eight-character
name of the console from which the reply to the WTOR was entered.

One of the possible uses for the IMFWTCON variable is that it enables
you to direct reply WTOs specifically to the console where the user
entered the reply to this WTOR.

Note: These variables are carried over to the TSO pool created for an EXEC called using the IMFEXEC
SELECT command with parameter WAIT(YES) specified.

See “Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 for
more information about EXEC-initiated EXECs executing within the same thread.

Variable Name Description Applicable
specifically for
which EXEC
type

Variable Name Description

RC The return code from any executed host command.

If IMFEXEC detects an error, it sets the REXX TRACE Negative condition to TRUE. As a
result, the incorrect IMFEXEC statement is traced. After echoing the incorrect IMFEXEC
statement to the BBI-SS PAS Journal, REXX issues its own trace message, which is prefi
by +++.

RESULT The value of an expression returned by the RETURN command.

SIGL The line number of the statement currently executing when the last transfer of control to
label took place.
Chapter 4. Using Variables in REXX EXECs 61

to
y

me
he
nto
EC
• Using IMFEXEC CMD with the RESPONSE capability to issue MVS commands (refer
“CMD (MVS Version with Response through X-MCS Consoles)” on page 310) and b
invoking SYSPROG services using the IMFEXEC RES command

The LOCAL pool is useful for passing variables between EXECs executing within the sa
thread (for example, EXEC-initiated EXECs where WAIT(YES) is coded). For example, t
calling EXEC includes an IMFEXEC VPUT statement to put variables from the TSO pool i
the LOCAL pool. Then, the called EXEC can operate on those variables by using IMFEX
VGET to get those variables from the LOCAL pool into the TSO pool; for example:

N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N LOCAL" /* IMFEXEC VPUT cmd places variable in LOCAL pool*/

This example stores variables from the TSO pool to the LOCAL pool.

Local variables are not available to EXECs invoked by the REXX CALL function.
62 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 to

OL

pool

on.

he
Using SHARED Variables and Pools

SHARED variables are a pool of GLOBAL variables maintained in CSA. Variables in this
pool are:

• Created by a user who uses the IMFEXEC VPUT statement in an EXEC

For example:
N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N SHARED" /* IMFEXEC VPUT cmd places variable in SHARED
 pool*/

This example stores variables from the TSO pool to the SHARED pool.

• AutoOPERATOR–supplied

AutoOPERATOR supplies a set of read-only SHARED variables that begin with the
prefix Q.

If you create your own new variables,do not use a prefix of Q.

If a BBI-SS PAS warm start is performed: The SHARED variable pool is kept, and all
variables have the same values as before the warm start.

If a BBI-SS PAS cold start is performed: The SHARED pool will be resetonly if you
specify the RESET parameter in your BBI-SS PAS JCL. The default is NORESET. Refer
“Cold Start of a BBI-SS PAS” in theMAINVIEW Administration Guide for more information
on resetting the variable pool at BBI-SS PAS cold start.

You can also reset the pool by issuing the statement:

"IMFEXEC VDEL ALL SHARED"

in an EXEC. This deletes all the variables from the SHARED pool except the
AutoOPERATOR-supplied variables.

To display the contents of the variable pool, use the BBI control command DISPLAY VPO
(parameters). Refer to theMAINVIEW Administration Guide for more information about the
BBI control commands.

Serializing Variables

During the time between the VGET and the use of the variable, the value in the SHARED
may have been modified by another EXEC. EXEC authors are responsible for ensuring
variable integrity through the consistent use of ENQ and DEQ facilities throughout the
automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 70 for more informati

The following lists AutoOPERATOR-supplied SHARED variables that can be used with t
IMFEXEC VGET command in an EXEC but cannot be used with IMFEXEC VPUT.
Chapter 4. Using Variables in REXX EXECs 63

tion:

er

ver
AutoOPERATOR-Supplied SHARED Variables

AutoOPERATOR COMMAND/POST Extension Shared Variables

The following are REXX shared variables that are used when performing a GME connec

Variable Description

QAOREL Contains a 5-character string indicating the release of AutoOPERATOR

The string takes the formatv.r.m where:

v Is the version level
r Is the release level
m Is the modification level

QIMFID The BBI subsystem ID of this BBI-SS PAS.

QIMGSTA (IMS & DB2 Performance Products only)

The status of BBI-SS PAS Image logging as ACTIVE or INACTIVE.

QIMGSUF (IMS & DB2 Performance Products Only)

The suffix of the current or last active BBI-SS PAS Image data set. If logging has nev
been initialized, the value is null.

QIMSID The IMSID of the IMS/VS being monitored. This IMSID is available only when
IMS/VS is active. This IMSID is the same as the IMS/VS identified by QIMSNAME.

QIMSNAME The jobname of the IMS/VS being monitored by this BBI-SS PAS.

QIMSREL Contains the IMS release number.

QIMSSTA The status of IMS/VS (ERE, WARM, COLD, or INACT).

QJNLSTA The status of BBI-SS PAS Journal logging as ACTIVE or INACTIVE.

QJNLSUF The suffix of the current or last active BBI-SS PAS Journal data set. If logging has ne
been initialized, the value is null.

QSMFID The SMF system ID of the system where the EXEC is running.

QSSNAME Contains the jobname of the SS address space.

Variable Description

QGMADDR.GMEID IP address ofGMEID (GME node).

QGMTGTHB.GMEID Target heartbeat interval in minutes that AutoOPERATOR waits before sending
another heartbeat to target “gmeid”.

QGMLCLHB.GMEID Local heartbeat interval in minutes between AutoOPERATOR’s receiving of
heartbeats from target “gmeid”.

QGMLPORT.GMEID Listener port for the web server. Zero means no listener port is specified.

QGMMSGL.GMEID Maximum length of a message accepted from the GME node.
64 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

QGMNAME.GMEID Host name of the local GME node.

QGMRTC.GMEID Maximum connection retry count for the GME node.

QGMRTI.GMEID Connection retry interval for the GME node in minutes.

QGMSTAT.GMEID Status ofGMEID (ACT, INACT, or DISCO).

QGMTRAPP.GMEID Minimum level of Application trace records to be sent byGMEID.

QGMTRGME.GMEID Minimum level of GME trace records to be sent byGMEID.

QGMTRSEC.GMEID Minimum level of Security trace records to be sent byGMEID.

QGMWND.GMEID Maximum number of messages that require acknowledgements sent toGMEID without
waiting for previous messages to be acknowledged. Zero indicates no maximum.

Variable Description
Chapter 4. Using Variables in REXX EXECs 65

a of

nd

S is

nds,

e

f the

pool

on.
Using the PROFILE Pool

The PROFILE pool is a pool of GLOBAL variables maintained in the extended private are
the BBI-SS PAS and in a checkpoint data set named BBIVARS referred to by the DD
statement in the BBI-SS PAS JCL.

Variables in this pool are created by:

• A user who uses the IMFEXEC VPUT statement in an EXEC

For example:

N=1 /* Creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N PROFILE" /* IMFEXEC VPUT cmd places variable in
 PROFILE pool*/

This example stores variables from the TSO pool to the PROFILE pool.

The variables are written to the BBIVARS data set every time the IMFEXEC VCKP comma
is issued or when an EXEC that updated any PROFILE variable is terminated.

This variable pool is reconstructed from the BBIVARS data set whenever the BBI-SS PA
restarted. Each variable then contains the value last VPUT into it prior to the BBI-SS PAS
termination. Variable integrity is maintained across IPLs and even if the BBI-SS PAS abe
except where:

• The BBI-SS PAS abends after a variable is VPUT to the PROFILE pool but before th
EXEC ends

• Before an IMFEXEC VCKP command is issued for the variable

Under these circumstances, the variable in the PROFILE data set or disk would be that o
last completed update.

Serializing Variables

During the time between the VGET and the use of the variable, the value in the PROFILE
may have been modified by another EXEC. EXEC authors are responsible for ensuring
variable integrity through the consistent use of ENQ and DEQ facilities throughout the
automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 70 for more informati
66 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ystem
factors
rator

al

EC

in the

 and
Saving Data in a Variable Pool

Complex EXECs may use many input sources, such as performance monitors and subs
messages, to create automation procedures. These procedures can depend on several
that vary over time. An example of these factors might be the name of the current shift ope
or the name of the on-call IMS support person.

Variable pools provide a useful means of saving this type of information for use by sever
automation procedures.

Potential Use

It is useful to localize site-dependent automation information (such as names and phone
numbers of key personnel) in variables for all automation procedures to use. A simple EX
can be written to set these variables whenever the variable pool is reset.

Describing the Example

This example shows an EXEC that is used to set site-dependent automation information
PROFILE variable pool.

Information about key personnel is hardcoded in the EXEC (for example: name, user ID,
telephone numbers). The EXEC creates LOCAL variables for this information with the
variables:

• NAME
• USERID
• WORKPHON
• HOMEPHON
• PAGER

The EXEC then places the variables into the PROFILE pool under one variable name,
IMSPROG.
Chapter 4. Using Variables in REXX EXECs 67

Example

/* REXX */
/**/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SAVING VARIABLES TO PROFILE POOL) */
/**/

NAME = 'JOHN_SMITH'
USERID = 'JJH1'
WORKPHON = '800/323-2375'
HOMEPHON = '312/666-1234'
PAGER = '312/999-9999'
"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)"
"IMFEXEC VPUT IMSPROG PROFILE"
ENDEXIT: END

Figure 10. Saving Variables in a Variable Pool
68 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

th

ese
so

and

” on

 it
RID,

T

Retrieving Data from a Variable Pool

This section describes how and why you can retrieve information from a variable pool wi
EXECs.

Potential Use

There are many instances when you might want to create EXECs to notify individuals or
groups of individuals about serious operations situations. It is advantageous to create th
notifications in a general way so that they refer to a title or a group name, but you can al
write an EXEC that notifies specific individuals by name when a situation occurs.

Variable pools provide this capability by allowing you to store variable data such as names
phone numbers and retrieve them later.

Describing the Example

This EXEC retrieves the name, user ID, and telephone numbers of the IMS systems
programmer from the PROFILE pool where it was saved in the example on page “Example
page 68.

The VGET statement retrieves the variable IMSPROG from the PROFILE pool. Because
was saved and retrieved as a list variable, the data is mapped in the variables NAME, USE
and so on.

The data retrieved from IMSPROG is used to fill in the variable fields needed in the ALER
command. Finally, a return code is set to zero and the EXEC exits.

Example

/* REXX EXEC */
/**/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RETRIEVING VARIABLES) */
/**/

"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)"
"IMFEXEC VGET IMSPROG INTO(IMSPROG) PROFILE"
"IMFEXEC ALERT IMSPROG"TIME()"",
 "'IMSPROG IS NEEDED. CALL "NAME" AT /N "WORKPHON" OR",
 ""HOMEPHON"'" "FUNCTION(ADD) PRI(MAJOR) QUEUE(IMSPROG)"
"IMFEXEC EXIT CODE(0)"
EXIT

Figure 11. Retrieving Variables in a Variable Pool Example
Chapter 4. Using Variables in REXX EXECs 69

to
nd
age
f
ed

tly
 to

the

set a
ntical

ED
 pool,
Sharing Variables while Multi-Threading EXECs

If you are allowing concurrent execution of multiple EXECs (see “Multi-Threading EXECs
the Normal or Priority Queue” on page 75), then GLOBAL variables might be accessed a
modified by several EXECs concurrently. AutoOPERATOR does not serialize variable us
between IMFEXEC VGET and VPUT commands. You are responsible for the contents o
your SHARED or PROFILE pool. The IMFEXEC VENQ and VDEQ statements are provid
to serialize any resource. They are especially useful for serializing the use of variables.

Potential Use

You must be careful if a GLOBAL variable can be updated by different EXECs concurren
or if an EXEC that updates a GLOBAL variable executes multiple times concurrently due
the use of multi-threading. This could eventually lead to disastrous results.

This example EXEC updates GLOBAL variables; it uses a locking mechanism provided by
IMFEXEC VENQ command to avoid variable corruption.

Describing the Example

This EXEC serializes a resource named ABENDCNT. The site that uses this EXEC has
standard saying that GLOBAL variables are serialized using a resource name that is ide
to the variable name. All EXECs within the site must conform to the standard or variable
integrity might not be maintained.

The EXEC obtains an exclusive ENQ on the resource, reads the variable from the SHAR
pool, performs some operations on the variable, saves the variable back in the SHARED
releases the resource, and exits.

Example

/* REXX EXEC */
/*--*/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(USING VENQ AND VDEQ) */
/* DOC DISP(YES) AUTHOR(JAC) */
/*--*/
"IMFEXEC VENQ 'ABENDCNT' EXC"
IF IMFCC NE 0 THEN EXIT(16)
"IMFEXEC VGET ABENDCNT"
.
.
.
ABENDCNT=ABENDCNT+1
"IMFEXEC VPUT ABENDCNT"
"IMFEXEC VDEQ 'ABENDCNT'"
IF IMFCC NE 0 THEN EXIT(16)
"IMFEXEC EXIT CODE(0)"

Figure 12. Using VENQ and VDEQ to Serialize Variables
70 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

the

X

st use

ulti-

e first

h as
all
Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment
Messages

Rule-initiated EXECs fired by multi-line WTOs or multi-segment message can access only
first line or segment of the MVS or IMS message with symbolic parameters on the PROC
statement. For more information about Rule-initiated EXECs, refer to “Rule-Initiated REX
EXECs” on page 29.

To access the additional lines and segments in the MVS or IMS message, the EXEC mu
the IMFEXEC VGET statement to create LOCAL variables for LINE1 through LINExxxx
(depending on the number of lines of the WTO).

The actual number of lines or segments in the MVS or IMS message is stored in the TSO
variable IMFNOL. If you have five lines, then IMFNOL=5.

Potential Use

This section describes how to handle accessing the additional lines of information from m
line WTOs or multi-segment messages.

This example shows an MVS multi-line WTO that fired a Rule-initiated EXEC:

JOB01766 IEF450I JDB1ABND - ABEND=S0C1 U0000 REASON=00000001 984
 984 TIME=10.51.34

Describing the Example

In this example, the ARG statement does not contain any symbolic parameters because th
line of the message is retrieved from the LINE01 variable.

However, in general, the first line could also be retrieved using symbolic parameters (suc
in Rule-initiated EXECs). This example demonstrates this process. The EXEC retrieves
lines of IEF450I and writes the output of this message to the BBI-SS PAS Journal.

Example

/* REXX EXEC */
/**/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(RETRIEVING MULTILINE WTO) */
/* DOC DISP(YES) AUTHOR(JAC) */
/**/

 DO I = 1 to IMFNOL
 "IMFEXEC VGET LINE"I" LOCAL"
 "IMFEXEC MSG '"VALUE('LINE'I)"'"
 END

Figure 13. Multi-Line WTO EXEC Example
Chapter 4. Using Variables in REXX EXECs 71

72 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

)

at

lled
y
ority

ad,
der

the
re is
ne
Chapter 5. Controlling EXEC Execution

This chapter discusses how to:

• Schedule EXECs to be run

• Schedule an EXEC that waits for another EXEC to complete (synchronous execution

• Invoke an EXEC

• Monitor and control EXEC execution using BBI control commands

• Code an EXEC to display CPU consumption

Scheduling EXECs

Each EXEC represents a unit of work that needs to be completed. Just as any system th
handles requests to complete work, AutoOPERATOR provides scheduling facilities for
EXECs. EXECS are queued for execution to either:

• The Normal queue

• The Priority queue

Defining Threads

When an EXEC is scheduled to either the Normal or Priority queue, it waits for a server, ca
a thread, to become available. The number of threads available to the Normal and Priorit
queues are defined by the installation (see “Multi-Threading EXECs to the Normal or Pri
Queue” on page 75).

An EXEC remains assigned to a single thread until the EXEC terminates. In a single thre
only one EXEC can be actively running at any one time. Multiple EXECs can execute un
the same thread: this is calledsynchronous execution. Refer to “Invoking EXECs
Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 for more
information.

Scheduling EXECs to the Normal Queue

By default, all EXECs (ALERT-initiated, Time-initiated, and so on) are scheduled through
Normal queue regardless of how they are invoked. The EXEC executes immediately if the
a thread available, otherwise it waits until one becomes available. The default setting is o
thread for the Normal queue.
Chapter 5. Controlling EXEC Execution 73

end

C

r
d,

ith

,

d is
Scheduling EXECs to the Priority Queue

The Priority queue is for EXECs that must not wait for a long backlog of processing. To s
an EXEC to the Priority queue, you must identify the EXEC in either of two ways:

• Specify the name of the EXEC in BBPARM member AAOEXP00

• Use the PRI(HI) parameter of the IMFEXEC SELECT command

Refer to “SELECT” on page 351 for more information about how to code the IMFEXE
SELECT command.

Both these methods are described in this chapter.

Naming the EXEC in BBPARM member AAOEXP00: In BBPARM member
AAOEXP00, the EXEC= parameter allows you to specify the names of EXECs that will
automatically receive high priority status. TheMAINVIEW AutoOPERATOR Customization
Guide contains information for BBPARM member AAOEXP00.

Example 1: BBPARM member AAOEXP00 contains the statement:

EXEC=THREE

This parameter specifies that an EXEC namedTHREE is queued to the Priority queue wheneve
it is invoked and regardless of how it is invoked (for example, Rule-initiated, ALERT-initiate
and so on).

The exception to this situation is for EXEC-initiated EXECs where an EXEC is invoked w
the IMFEXEC SELECT statement. See Example 2 on this page for clarification.

Example 2: If you use the IMFEXEC SELECT statement to schedule an EXEC that is
named in BBPARM MEMBER AAOEXP00, you must still code the parameter PRI(HI) to
have the EXEC scheduled to the Priority queue.

To schedule an EXEC named in BBPARM member AAOEXP00 with IMFEXEC SELECT
code:

IMFEXEC SELECT EXEC(THREE XYZ1 XYZ2) PRI(HI)

EXECTHREE executes immediately on the Priority queue if there is at least one thread
available. If there is no Priority thread available, then the EXEC waits until a Priority threa
available.

You must restart the BBI-SS PAS to pick up new EXEC names added to AAOEXP00.
74 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

alls

 not
u

to
 the

fer
Using the IMFEXEC SELECT Statement and the PRI(HI) Parameter: You can use
the PRI(HI) parameter with the IMFEXEC statement to schedule an EXEC to the Priority
Queue. To do this, code the PRI(HI) operand on the IMFEXEC SELECT command that c
the EXEC.

For example; the following statement:

IMFEXEC SELECT EXEC(FOUR XYZ1 XYZ2) PRI(HI)

schedules EXECFOUR for execution on the Priority queue.

EXECFOUR executes immediately if there is at least one Priority thread available. If no
Priority thread is available, then the EXEC waits until a Priority thread is available.

EXECs can be added dynamically to libraries in the SYSPROC concatenation so you do
have to restart the BBI-SS PAS if you use this method to schedule priority EXECs but yo
must issue the.RESET BLDL SYSPROC command.

Multi-Threading EXECs to the Normal or Priority Queue

Define multiple threads for the Normal queue and the Priority queues in the BBPARM
member AAOEXP00. This allows concurrent execution of multiple EXECs. The following
table shows how to do this.

If you are operating with MAXNORM or MAXHIGH set to greater than one and then want
reset MAXNORM=1, you must ensure that no automation procedures are dependent on
concurrent execution of several EXECs.

CAUTION:
Multi-threading EXECs requires additional virtual storage in the BBI-SS PAS address
space. If virtual storage is insufficient, the SS will fail with an x78 abend.

Multi-threading EXECs may also require variable serialization using ENQ/DEQ logic. Re
to “Sharing Variables while Multi-Threading EXECs” on page 70 for more information.

Queue Name Parameter Name Example

Normal queue MAXNORM=

Specify the number of threads on
the MAXNORM= statement in
BBPARM member AAOEXP00

For example, the parameter statement:

MAXNORM=10

defines 10 threads for the Normal queue and 10 EXECs
can run concurrently in the Normal queue.

Priority queue MAXHIGH=

Specify the number of threads on
the MAXHIGH= statement in
BBPARM member AAOEXP00

For example, the parameter statement:

MAXHIGH=5

defines five threads for the Priority queue and five
EXECs can run concurrently in the Priority queue.
Chapter 5. Controlling EXEC Execution 75

faster
wing
 with

H.
up.

cked
he

hing

Cs.
eues,

en
but

ore
eads.
r of
Using EXEC Threads and Their Effect on Performance

BMC Software recommends that all automation be done within a Rule (or set of Rules)
whenever possible. This is both for performance and storage considerations. Rules are
and use less resources. However, not all automation can be done within Rules. The follo
information and/or recommendations offers assistance in tuning your automation for use
EXECs.

AutoOPERATOR is shipped with the following default values for MAXHIGH and
MAXNORM EXEC threads. When installed with AutoCustomization:

• MAXNORM=5
• MAXHIGH=5

When using BBPARM member AAOEXP00 as it is shipped with AutoOPERATOR, the
settings are:

• MAXNORM=1
• MAXHIGH=5

It is necessary to understand of the two types of EXEC threads, MAXNORM and MAXHIG
EXECs are normally considered batch work. This batch work may occasionally get backed
You can control the maximum number of queued EXECs with the MAXNORMQ and
MAXHIGHQ fields in BBPARM member AAOEXP00.

Because not all automation can be done with Rules, AutoOPERATOR provides a way of
scheduling higher priority automation within an EXEC. This is where the Priority EXEC
thread comes into use. AutoOPERATOR intends that the Priority queue does not get ba
up (or it should back up much less). Therefore, the default MAXHIGH value shipped in t
sample BBPARM member AAOEXP00 is much higher than the value for Normal EXECs
(MAXNORM).

Note: When tuning automation through EXECs, you should note that the actual dispatc
priority of Priority EXECs is the same as a Normal EXEC.

These Priority EXECs compete for CPU on the same dispatching priority as NORM EXE
The concept of a Normal and Priority EXEC queue is designed as a method to have 2 qu
where one is used less and therefore, scheduled faster.

For example, if you have MAXNORM=5 and MAXHIGH=5 and currently have 10 Normal
EXECs scheduled, you would have 5 currently running and 5 queued up to run. If you th
want to schedule a new EXEC, if it was Normal it would be queued up behind the other 5,
if it was Priority, it runs immediately.

It is also important to know that “more is not faster”. Using more EXEC threads means m
tasks for MVS to manage. The CPU overhead goes up because there are more EXEC thr
Each system is different and no specific value for CPU consumption (or optimum numbe
EXEC threads) can be provided. For most sites the default value of MAXNORM=5 and
MAXHIGH=5 is sufficient. However, the optimum value for an individual system may be
lower or higher.
76 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

m

t the

A to

r
les

rts.
s.

stem.

 a

s to
se the

ut.

MVS
w

lly
Additional Recommendations

Ypu should take into consider the following when tuning AutoOPERATOR for the optimu
value of MAXNORM and MAXHIGH:

1. Start with the least number of EXEC threads needed to get the desired throughput.

2. Use MAXNORMQ and MAXHIGHQ along with the warning settings in BBPARM
member AAOEXP00 so you can be advised when the EXEC threads queue up. Adjus
MAXNORM and MAXHIGH values as needed.

3. All EXEC threads, whether CLIST or REXX EXECs, use a large amount of private
storage below the line. Use of an excessive amount of EXEC threads will cause LSQ
limit the amount of low private available to the system.

4. Carefully consider the actions within the EXECs before changing MAXNORM and/o
MAXHIGH settings. Move automation out of EXECs to Rules whenever possible. Ru
are always faster and always use less system resources.

5. Consider breaking EXECs that wait for an excessive amount of time into multiple pa
A combination of Rules and EXECs may be used to replace one long running EXEC

Each system and automation strategy is different and tuning should be done on each sy
However, where you need some recommendations to start with, you can also”

1. Start with the default values supplied in AAOEXP00.

2. Use the following threshold control fields in AAOEXP00 to determine when you have
problem.

MAXNORMQ=0 (default of 0 means not in use)

MAXHIGHQ=0 (default of 0 means not in use)

WARNLVL1=60 (default of 60 but not valid until MAXNORM or MAXHIGH used)

WARNLVL2=75 (default of 75 but not valid until MAXNORM or MAXHIGH used)

3. Only change automation strategy after careful analysis of what is causing the queue
back up. Remember, more EXEC threads use more CPU and therefore may increa
queue back log.

4. Use the least number of EXEC threads needed to accomplish the required throughp

5. MAXHIGH should be set equal or higher to MAXNORM.

6. Lastly, more EXEC threads means higher use of LSQA, since each thread needs a
TCB, etc. which all reside in LSQA. If you have been experiencing a shortage of lo
private storage (for example, ABENDS s878-10), check the values of MAXHIGH and
MAXNORM.

Any value greater than the recommended value of 5 and 5 respectively should be carefu
considered as a possibility of contributing to a shortage of low private storage.
Chapter 5. Controlling EXEC Execution 77

e

ks

ew

er
thread.

an

d
CL,
the
XEC.

ed.

ES)
S)
Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC)
WAIT(YES)

Some automation procedures may need to include more than one EXEC to run. Using th
IMFEXEC SELECT statement in an EXEC allows one EXEC to invoke another EXEC-
initiated EXECs are usually subroutines or service routines that carry out specialized tas
needed by several automation procedures.

An EXEC can invoke another EXEC under the same thread (synchronously) or under a n
thread (asynchronously). IMFEXEC SELECT allows one EXEC to invoke another. If
IMFEXEC SELECT is coded with WAIT(YES), the called EXEC is invoked to execute und
the same thread. Otherwise, the called EXEC executes as a separate task under a new

The following table shows where you can find more information.

Passing Control of the EXEC

By specifying the WAIT(YES) parameter on an IMFEXEC SELECT statement, an EXEC c
schedule another EXEC, wait for its completion, and then resume execution.

When an EXEC invokes another EXEC using the WAIT(YES) parameter, control is passe
immediately to the called EXEC. The called EXEC can use the IMFEXEC statements VD
VGET, and VPUT to access all the LOCAL, GLOBAL, and SHARED variables created by
first EXEC, but it does not have access to any of the TSO variables created by the first E

The execution of the calling EXEC is suspended when the called EXEC is being process
When the called EXEC terminates, the first EXEC receives control at the first statement
immediately after the IMFEXEC SELECT statement.

BBI variables IMFCC and IMFRC are used to report the success of the scheduled WAIT(Y
EXEC. See “Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YE
and User Written Programs” on page 354 for a complete discussion.

For EXECs invoked with the IMFEXEC SELECT EXEC() WAIT(yes) statement, the two
ways to pass back results are using:

• IMFEXEC EXIT CODE(x)

• A local, shared, or profile variable

Using RETURN will give control back to the calling EXEC but the passed back value
(RESULT) is not supported.

To read about... See...

EXEC-initiated EXECs “EXEC-Initiated REXX EXECs” on
page 42

Using the IMFEXEC SELECT statement and its
parameters

“SELECT” on page 351

Using variables “Using Variables in REXX EXECs”
on page 49
78 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

n of

ply:

C

 it is

d

Implementing an EXEC

Once an EXEC has been designed, coded, and tested, it can be implemented in
AutoOPERATOR using two steps:

• Move the EXEC to a data set in the SYSPROC or the SYSEXEC library concatenatio
your production BBI-SS PAS.

If you use both the SYSPROC and SYSEXEC members, the following limitations ap

– EXECs in SYSEXEC can be invokedonly if REXX=YES is specified in BBPARM
member AAOEXPxx, where xx is the suffix of the member being used. SYSEXE
can contain only REXX EXECs and tokenized REXX EXECs.

Refer to theMAINVIEW AutoOPERATOR Customization Guidefor more information
about setting REXX=YES in BBPARM member AAOEXP00.

– If you have an EXEC with the same name in both the SYSPROC and SYSEXEC
members, then the EXEC is SYSEXEC is executed.

– If you have an EXEC with the same name in both the SYSPROC and SYSEXEC
members, then disabling the EXEC in one member also disables it in the other
member.

In other words, the EXEC always has the same status, no matter which member
in.

– Both SYSPROC and SYSEXEC can be browsed from the EXEC Management
application.

– If you try to invoke an EXEC from the EXEC Management application that is liste
in SYSPROC and isalso listed in SYSEXEC, you will receive an error message.

• If the EXEC was moved to the BBPROC library concatenation (the DDNAME is
SYSPROC) after the BBI-SS PAS was recycled, issue the command:

.RESET BLDL SYSPROC

and the EXEC will be available immediately. Changes to existing EXECs take effect
immediately without the.RESET command but new EXEC names cannot be accessed
until the .RESET command is issued or the SS is started.

CAUTION:
If you try to access new EXEC names without a SS restart or resetting, you will
receive the following error message displayed in the upper corner:

EXEC NOT FOUND
Chapter 5. Controlling EXEC Execution 79

ed by:

.

he

 if it
s are
hese
Controlling EXEC Execution

This section describes how you can control the execution of EXECs once they are invok

• Setting time and CPU limits for EXECs

• Displaying the status of an EXEC

• Stopping (disabling), starting (enabling), and cancelling an EXEC

These functions are performed using the BBI control commands. Refer to theMAINVIEW
Administration Guide for more complete information about the BBI control commands

Setting Time and CPU Limits for EXECs

The following list describes how to set CPU and time limits for EXECs.

• Set the parameters in BBPARM member AAOEXP00:

– PEREXLIM

– TIMEXLIM

to control time and/or CPU limits for all EXECs.

• Use the IMFEXEC CNTL statement and its parameters in an EXEC:

– PERLIM(xx)

– TIMLIM(xx)

to control time and CPU limits for a specific EXEC.

If these parameters are specified in an EXEC, they override the parameters set on
PEREXLIM and TIMEXLIM in BBPARM member AAOEXP00. Refer to “CNTL” on
page 321 for a complete description of IMFEXEC CNTL and its parameters.

PERLIM(xx)

For example, if you specify:

IMFEXEC CNTL PERLIM(15)

The EXEC will run until it exceeds 15% of the CPU during any 15 second interval. If t
EXEC exceeds 15%, it is automatically terminated.

TIMLIM(xx)

For example, if you specify:

IMFEXEC CNTL TIMLIM(10)

the EXEC will run until it exceeds 10 CPU seconds. If the EXEC exceeds 10 CPU
seconds, it is automatically terminated and abend message U3001 is issued.

When an EXEC exceeds the limits you set, check to see if it is executing correctly or
has gone into a loop. Use the EXEC Management Application to determine if EXEC
running closely to the limits you have set. BMC Software recommends that you set t
parameters with non-zero valuesbecause a value of zero allows unlimited CPU
consumption by an EXEC.
80 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ting or

 to
er

. By
lay.

r to

C

to
Displaying EXEC Execution Status

You can monitor and control the progress of an EXEC by using the BBI control command
DISPLAY EXEC in the BBI Log display. The format of the command is:

.DISPLAY E|EXEC ALL|HIGH|NORMAL|STATS

This command shows the statistics for all running and queued EXECs. By examining the
progress of an EXEC, you can decide whether you need to take actions such as termina
disabling the EXEC.

You also can use the EXPAND primary command on the EXEC Management application
display currently active EXECs. For more information and an example, refer to the chapt
“Managing EXECs Using the EXEC Management Application” in theMAINVIEW
AutoOPERATOR Basic Automation Guide.

Cancelling, Stopping, and Starting EXEC Execution

You might decide to manually control the progress of an EXEC once it has been invoked
using the BBI control command .DISPLAY, you can see the progress in the BBI Log disp
If you decide to intervene in the EXEC, you can use the following BBI control commands:

You can also control the execution of an EXEC with the EXEC Manager application. Refe
theMAINVIEW AutoOPERATOR Basic Automation Guide for more information.

BBI Control
Command

Action taken

.CANCEL Terminates the execution of an EXEC while it is running or if it is
waiting for a thread to become available.

.STOP Disables an EXEC that is running. This command prevents the EXE
from being invoked again until it is either STARTed by the BBI
START command or RESET by the BBI RESET BLDL SYSPROC
command. Does not cancel the current EXEC.

.START Enables an EXEC that has been STOPped and makes it available
be invoked. This command doesnot invoke an EXEC.
Chapter 5. Controlling EXEC Execution 81

how

on,

such

,
D

d

EC

e

e

le
Analyzing EXEC Performance Using the EXEC Management
Application

This section discusses how you can use the EXEC Management Application to analyze
well EXECs are running on your system.

For a more general discussion about the AutoOPERATOR EXEC Management Applicati
refer to the chapter “Using the EXEC Management Application” in theMAINVIEW
AutoOPERATOR Basic Automation Guide.

The EXEC Management Application has panel displays that show EXEC usage statistics
as:

• The highest CPU total

• The average CPU percentage

• The number of times an EXEC as been executed since the last AutoOPERATOR
subsystem cold start

For performance analysis, the following data columns are of special interest:

Column Heading Description

SCHED Is the number of times the EXEC has been scheduled.

Each time an EXEC is scheduled from a Rule, ALERT-initiated EXEC
external program, the TS command line, or another EXEC, the SCHE
count is incremented. A REXX program executed through a CALL
statement is not counted.

When EXECA calls EXECB (with an IMFEXEC SELECT statement
where WAIT(YES) is specified), both EXECA and EXECB are counte
in the SCHED count.

TOTCPU Is the sum of CPU time used for all scheduled executions of the EX
since the SS was started.

If the EXEC schedules another EXEC (with an IMFEXEC SELECT
statement where WAIT(YES) is specified), then CPU collection for th
first EXEC is suspended until the selected EXEC returns control. If a
REXX EXEC executes another REXX EXEC using the REXX CALL
facility, the CPU time is charged to the calling EXEC.

AVGCPU Is the value when the value in the TOT-CPU column is divided by th
value in the SCHED column.

MAXCPU Is the greatest amount of CPU time the EXEC used during any sing
execution.
82 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

or

n at

 of a

)

n

y be

are

.

Using the SORT Command in the EXEC-Management Application

The SORT command can be used to categorize EXECs by their performance.

To use this command, enterSORT on the command line of the EXEC Management panel. F
example:

SORT AVGCPU D

sorts the display where the EXECs with the highest average CPU consumption are show
the top.

By sorting the display, you can more easily see where the AVERAGE CPU consumption
specific EXEC is equal-to or less-than the limit set in the TIMEXLIM parameter for the
subsystem.

You should address the EXECs that are executing above this limit for tuning.

Key Performance Indicator Discrepancies: Other discrepancies that can (and should
be analyzed are:

• When (for any EXEC) the MAXCPU is at least 25% greater than the AVGCPU colum

This indicates that an EXEC may be subject to spikes in CPU consumption. This ma
due to the volume of its input or other events that drive the EXEC.

• When the SCHED value (the number of times scheduled) is incrementing rapidly

This can indicate a scheduling loop or a flood of message events.

Note that in this event, the TOTCPU, AVGCPU, and MAXCPU numbers may be low.
Generally, EXECs that are being initiated excessively are Rule-initiated EXECs that
scheduled by a flood of events.

Often, such problems are resolved by altering the design of the Rule-initiated EXEC
Chapter 5. Controlling EXEC Execution 83

 set

m to
such

e

ool

zed
Writing EXECs that Display CPU Consumption

A common problem with EXEC performance is an EXEC exceeding the CPU thresholds
for AutoOPERATOR. The resulting abend can be bypassed by using IMFEXEC CNTL
statement in the EXEC to reset the limits. However, this can potentially expose your syste
excessive CPU consumption and/or program loops, and diagnosing a runaway situation
as this is difficult.

One technique for diagnosing these problems involves writing some additional code in th
EXEC to monitor itself.

For example:

• When writing REXX EXECs, use the statement:

TSO FUNCTION "SYSVAR('SYSCPU')"

This returns the total amount of CPU seconds used to date for the TCB on which the
EXEC is running.

• Change the EXEC to set a control variable with the CPU value on entry

The control variable can then be manipulated later as required.

For example:

/* REXX */
parse arg exec_name p1 .
do x = 1 to p1 by 1
 "VGET VARNAME"||x "SHARED"
 "MSG 'VARNAME"||x "=" value("VARNAME"||x)"'"

end x
"EXIT CODE(0)"
exit 0

This EXEC is a subroutine that displays an array of variables from the SHARED variable p
on the sub-system journal. Occasionally, it may spike in CPU consumption because the
number of array items spikes. However, this is not a situation that can be seen and analy
from the EXEC Management application.
84 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

sing

re

an

FI

lling
PU
Therefore, you can modify the EXEC to identify the problem and display diagnostic data u
the SYSCPU function as shown:

/* REXX */
entry_cpu = trunc(SYSVAR('SYSCPU')) /* Get CPU Time on entry */
parse arg exec_name p1 .
do x = 1 to p1 by 1
 "VGET VARNAME"||x "SHARED"
 "MSG 'VARNAME"||x "=" value("VARNAME"||x)
 time_used = trunc(SYSVAR('SYSCPU')) - entry_cpu

 if time_used => "CPU LIMIT SET ON THE SYSTEM" then
 do
 "ALERT" exec_name"@CPU 'CPU TIME AT" x "ELEMENTS IS"
 time_used"'"
 entry_cpu = trunc(SYSVAR('SYSCPU'))
 end

end x
"EXIT CODE(0)"
exit 0

In this example, the EXEC itself does some preliminary analysis for the EXEC writer. Mo
typically, this routine would be built into a common function which can be called.

BBSAMP member AOXCPUFI contains an example of REXX internal functions that you c
easily incorporate into another EXEC to selectively call for analysis.

BBSAMP member AOXCPUSI contains an example of a REXX EXEC that uses AOXCPU
(internally called by a REXX EXEC as CPU_FUNC) to monitor CPU utilization. This
example EXEC checks CPU consumption after a defined numbers of operations in its ca
routine to determine the threshold number of events that equal a predefined amount of C
seconds.

Note: BBSAMP member AOXCPUST contains the tokenized version of AOXCPUSI.
Refer to “REXX EXEC Considerations” on page 103 for more information about
tokenized REXX EXECs.
Chapter 5. Controlling EXEC Execution 85

86 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ibes

R

s

ultiple

s
ion
Chapter 6. Using Advanced Techniques with
AutoOPERATOR EXECs

This chapter describes some advanced functions of AutoOPERATOR EXECs and descr
how to handle EXECs across more than one BBI-SS PAS and target. Topics include:

• Scheduling EXECs across BBI-SS PASs

• Determining the origin of an EXEC

• Using the program called IMFSUBEX to invoke EXECs from outside AutoOPERATO

• Testing EXECs

• Deleting, reading, and writing SHARED and PROFILE variables across BBI-SS PAS

Overview

Any BBI-SS PAS address space can monitor other target systems. You can also have m
BBI-SS PAS address spaces communicating with one another. A target can be:

• Any CICS, IMS, DB2, or MVS system

• Any MVS subsystem

Define these two types of targets as follows:

Because EXECs can interact with any target you specify, careful managing of your EXEC
across more than one target or BBI-SS PAS becomes very important. For more informat
about targets and BBI-SS PAS to BBI-SS PAS communication, refer to theMAINVIEW
Administration Guide.

Target type BBPARM member Parameter name

MVS, CICS, IMS BBIJNT00 target=

MVS subsystem BBINOD00 subsys=
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs87

t,

target

ant
s and

fy the
lish

hese

SS
Scheduling Messages and EXECs Across BBI-SS PASs

The following items can be sent from one BBI-SS PAS to any other BBI-SS PAS or targe
even in remote locations:

• Messages

• EXECs

• ALERTs

• IMF or MAINVIEW for DB2 service commands

This means a single BBI-SS PAS can monitor and control many systems as long as the
systems have a BBI-SS PAS product installed. It is also possible to detect and correct
conditions that arise in one target system but affect another target system. This is import
because you want to be able to manage and control all the activity between BBI-SS PAS
targets.

To accomplish these tasks, you would use the appropriate IMFEXEC statement and speci
target with the TARGET keyword. The following table shows what tasks you can accomp
and which IMFEXEC statements to use.

Refer to “Using the IMFEXEC Statements” on page 237 for the complete description of t
IMFEXEC statements.

The target that you specify on these commands must be defined in BBPARM member
BBIJNT00 on the local BBI-SS PAS. For information about how to define targets to a BBI-
PAS, refer to “Step 20: (Required) Define BBI-SS PAS Suffixes and Target System
Parameters” in theMAINVIEW Common Customization Guide.

Task IMFEXEC statement

Send a message to another target IMFEXEC MSG TARGET(tgtname)

Send an EXEC to another target Either:

• IMFEXEC SELECT(execname) TARGET(tgtname)

• IMFEXEC SET REQ=CALLX

This IMFEXEC statement allows access to the timer facility to invoke a
time-initiated EXEC. The TARGET keyword allows you to specify
another target.

Send an ALERT to another
target

IMFEXEC ALERT TARGET(tgtname)

Send an IMF or MainView for
DB2 command to another target

IMFEXEC IMFC TARGET(tgtname)

Note: You can also schedule an EXEC to run at another target with the program IMFSUBEX. Refer to
“Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX” on page 93 for more
information.
88 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

nt.

 that

e on

 BBI-

rget
r

CS

fy
S,

d

et
r

These examples show how you can schedule EXECs, messages, ALERTs, and other
commands to targets with the TARGET keyword with the appropriate IMFEXEC stateme

Examples

To send a message from one BBI-SS PAS to another target: Use the IMFEXEC
MSG statement in an EXEC with the TARGET keyword and specify the name of a target
is defined in BBPARM member BBIJNT00 for an MVS, CICS, IMS, or DB2 system or
BBPARM member BBINOD00 for an SS.

The message will be logged on the remote BBI-SS PAS Journal, and no entry will be mad
the originating system's Journal. For example:

"IMFEXEC MSG 'MANUFACTURING DATABASE IS OFFLINE' TARGET(CICSPROD)"

sends a message from a local BBI-SS PAS to the BBI-SS PAS Journal of the production
SS PAS that is monitoring a CICS system calledCICSPROD.

To schedule an EXEC from one BBI-SS PAS to another target: Use the IMFEXEC
SELECT command in an EXEC with the TARGET keyword and specify the name of a ta
that is defined in BBPARM member BBIJNT00 for an MVS, CICS, IMS, or DB2 system o
BBPARM member BBINOD00 for an SS. For example:

"IMFEXEC SELECT EXEC(PAYROLL START) TARGET(CICSPROD)"

schedules an EXEC from the local BBI-SS PAS to the BBI-SS PAS where the remote CI
production system is defined.

To send a time-initiated EXEC from one BBI-SS PAS to another target: Use the
IMFEXEC SET REQ=CALLX statement in an EXEC with the TARGET keyword and speci
the name of a target that is defined in BBPARM member BBIJNT00 for an MVS, CICS, IM
or DB2 system or BBPARM member BBINOD00 for an SS. For example:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=6:00:00 STOP=20:00:00",
 "I=02:00:00 TARGET(BBSYSA)"

schedules an EXEC named@HOURLY to be run at two hour intervals beginning at 6:00 am an
ending at 8:00 pm on the target system called BBSYSA.

To send an ALERT from one BBI-SS PAS to another target: Use the IMFEXEC
ALERT statement in an EXEC with the TARGET keyword and specify the name of a targ
that is defined in BBPARM member BBIJNT00 for an MVS, CICS, IMS, or DB2 system o
BBPARM member BBINOD00 for an SS. For example:

"IMFEXEC ALERT NETW2",
 "'COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO'
FUNCTION",
 "(ADD) QUEUE(NETWORK)",
 "PRIORITY(CRITICAL) COLOR(PINK) TARGET(NYCSYS)"

sends a multi-line ALERT to a target called NYCSYS.
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs89

ging
To send an IMF or MainView for DB2 command from one BBI-SS PAS to another
target: Use the IMFEXEC IMFC statement in an EXEC with the TARGET keyword and
specify the name of a target that is defined in BBPARM member BBIJNT00 for an MVS,
CICS, IMS, or DB2 system or BBPARM member BBINOD00 for an SS. For example:

"IMFEXEC IMFC PLOT ARVTR ABC IMSNAME=PRODIMS TARGET(SYSA1)"
"IMFEXEC IMFC PLOT CSAUT IMSNAME=IMSP TARGET(SYSA1)"
"IMFEXEC IMFC STAT IMSNAME=IMSP TARGET(SYSA1)"

invokes synchronous analyzer services such as STAT, CLASQ, or PLOT for automatic log
on a target called SYSA1.
90 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 target
 to

an
 The
get.

's
 an

4.

XEC
he
Determining the Origin of a Command or EXEC

The flexibility of the AutoOPERATOR EXEC processor allows an EXEC to be initiated in
many ways from many targets. Because commands and EXECs can be issued from one
in one BBI-SS PAS to other targets within or across BBI-SS PASs, you need to know how
determine the origin of a command or EXEC.

Determining the origin of an EXEC is especially important for security reasons because
EXEC can send a message or another EXEC to execute some action on another target.
target should be able to take or not take the action based on the origin of the sending tar

This means that the author of an EXEC must take special steps to ensure that the EXEC
action is appropriate for the situation. AutoOPERATOR provides two variables that allow
EXEC to determine:

• The name of the originating BBI-SS PAS (IMFORGSS)

• The origin of the EXEC (IMFORGN)

The origin of commands within an EXEC is the same origin as that of the EXEC.

These variables are defined in “TSO Variables Supplied by AutoOPERATOR” on page 5

Use these variables to determine, for example, if the caller is authorized to execute the E
or to determine the user ID that is to receive any informational messages returned from t
EXEC. Both variables are automatically available to all EXECs.

Determining IMFORGN

The following table shows what origin (IMFORGN) is, depending on how the EXEC was
initially triggered:

If the command or EXEC is: Then origin (IMFORGN) is:

User-initiated (from a BBI-TS) The user's USERID

Time-initiated The BBI-SS PAS ID of the BBI-SS PAS that called the EXEC

BBI-SS PAS message-initiated The BBI-SS PAS ID of the BBI-SS PAS that issued the message

Externally initiated One of these:

• JOBNAME

• The RACF user ID

Refer to “Invoking REXX EXECs from Outside of AutoOPERATOR
with IMFSUBEX” on page 93 for more information about the origin for
externally initiated EXECs. See the definition of “ORIGIN”.

IMS message-initiated The IMS JOBNAME of the calling EXEC

IMS command from an IMS terminal The LTERM of the IMS terminal

CICS exception-message initiated The name of the CICS region for which the message was issued

CICS TD-message initiated The name of the CICS region for which the message was issued
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs91

s a

g

e

Example - Determining the Origin of a User-Initiated EXEC

Scenario: For this example, there are two BBI-SS PASs called CICM and CICP. CICP ha
CICS target system called CICPROD defined to it.

A BBI-TS user with user ID TSOUSR1 logs onto CICM and schedules an EXEC named
PAYROLL. The origin of the PAYROLL EXEC is TSOUSR1.

The PAYROLL EXEC may try to schedule another EXEC, called DATAB, to the CICP
subsystem which is monitoring CICPROD. The origin of PAYROLL is CICM (the originatin
BBI-SS PAS of the EXEC) and it is passed to CICP.

Now, CICP must be able to determine if the origin called CICM is authorized to invoke th
DATAB EXEC by searching BBPARM for the authorization member and validating the
authority of CICM to run the EXEC.

DB2 exception-message initiated The name of the DB2 region for which the message was issued

MVS message-initiated One of these:

• JOB name

• STC name

• TSO name

EXEC-INITIATED The EXEC name of the calling EXEC

ALERT follow-up Either the user ID of the terminal session user or the value of ORIGIN

If the command or EXEC is: Then origin (IMFORGN) is:
92 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

dress
pletion
m a
r job

 that

BI-

g

Invoking REXX EXECs from Outside of AutoOPERATOR with
IMFSUBEX

EXECs can be invoked from any job running on a processor with a local BBI-SS PAS ad
space or from a remote processor. This can be useful to signal an event, such as the com
of an SMF Dump job running in the background. To do this, an EXEC can be invoked fro
batch program running as a separate job step or from a callable subroutine within anothe
or from TSO.

Use the AutoOPERATOR-supplied program called IMFSUBEX to submit these kinds of
EXECs. Keyword parameters passed to IMFSUBEX must specify:

• A local BBI-SS PAS Address Space ID (ASID) or an asterisk (*)

• The name of the EXEC to be invoked

• Any operands to be passed to the EXEC

and optionally:

• A different target

Example of a Parameter String Passed to IMFSUBEX

The following parameter string shows a complete example of all the keyword parameters
can be passed to IMFSUBEX:

SS(subsys) EXEC(execname p1...pn) [TARGET(tgt) +
 ORIGIN(source) WAIT(YES) MSGLVLI(NONE)]

The parameters from this statement are described in the following table:.

Keyword Required/
Optional

Description

SS Required Defines a BBI-SS PAS on the same processor as the invoking job. This B
SS PAS initially receives and processes the request, sending it to SS(*) or
another BBI-SS PAS if TARGET is specified.

If specified as*, any BBI-SS PAS found on that processor is acceptable (from
one to four asterisks accepted). Also, a generic name can be given by usin
positional (+) or generic (*) qualifiers, such as SS(+++P) or SS(P*).

EXEC|E Required Specifies the name of the EXEC and any parameters to be passed to the
symbolic variables defined as input in the EXEC.
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs93

d

at

o

to

 of

no
inst
e

TARGET|T Required Identifies a different target from the target system where the EXEC will be
invoked.

The specified TARGET should match a TARGET=(tgtname) parameter in
member BBIJNT00 of BBPARM. The EXEC is scheduled on the subsystem
that corresponds to the subsystem specified by the SS parameter. The
specified TARGET may also be an SSID which the original subsystem
communicates with.

If you omit the TARGET keyword, the default is the SSID name of the
subsystem that services this IMFSUBEX request. Then, you would not nee
to specify a TARGET=SS in BBIJNT00. In this case, the AUTHJOB=
parameter of your BBPARM authorization member must be specified so th
the SSID is recognized as a valid target. For example, you can specify the
parameter as:

AUTHJOB=*

in the BBPARM authorization member. With an asterisk, the IMFSUBEX
TARGET(). parameter can containany target specified in the BBPARM
BBIJNT00 member for the SS() specified subsystem.

ORIGIN|O Optional Specifies the source of the origin identifier used for security checking.

The default for this parameter is JOBNAME. The following values are valid:

• JOBNAME causes the jobname to be used as the security token.

• RACF causes the value supplied in the USER= keyword of the job card t
be used for the security token.

• USER causes the value supplied in the USER= keyword of the job card
be used for the security token.

If RACF or USER is specified, IMFSUBEX checks for the existence of the
RACF ACEEUSRI for the address space and uses what is specified as the
security token. If RACF ACEEUSRI does not exist, the JCTUSER field from
the job control table (JCT) is used.

WAIT|W Optional Specifies that at completion of the EXEC, either the generated return code
the EXEC or the condition code in batch is passed back from IMFSUBEX.

You must use caution when using the TARGET keyword with WAIT. The
TARGET keyword reserves the VTAM link between the originating BBI-SS
PAS and the target BBI-SS PAS for the duration of the EXEC and accepts
other requests (such as a user wanting to display an operational panel aga
this system). If the EXEC goes into a loop, you run the risk of occupying th
link indefinitely and essentially rendering the connection defunct.

Keyword Required/
Optional

Description
94 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

g to
tion,
as

turn
EC.
8,

code

T

then
Determining Return Codes from IMFSUBEX

A return code from IMFSUBEX indicates whether an EXEC was submitted for processin
the requested BBI-SS PAS. It is provided as the step completion code for a batch invoca
&LASTCC for TSO invocation, RC for a REXX EXEC, and returned in R15 when invoked
a called subroutine. Possible return codes are:

Codes Description of Condition Code

00 EXEC was submitted to the BBI-SS PAS

08 The requested BBI-SS PAS not available, or not at required service level

12 Either BBI or the site security exit denied request

16 Error in the parm string

20 Severe error (program abend)

In IMFSUBEX, to distinguish between the return code generated by the EXEC and the re
code generated by IMFSUBEX, a value of 2048 is added to the return code from the EX
Therefore, if the return code you receive from IMFSUBEX is equal to or greater than 204
then the EXEC has been successfully executed and ended.

For example, IMFSUBEX can call an EXEC where the calling EXEC has WAIT(YES)
specified. This means the calling EXEC halts execution until the called EXEC completes
before it completes (also known as synchronous execution). If IMFSUBEX calls such an
EXEC and the EXEC passes a return code of 4 when it completes, then the overall return
that appears in the job log for the batch job would be 2052.

Note: For the called EXEC to set a return code, the EXEC must use an IMFEXEC EXI
statement to end the EXEC.

In another scenario, an AutoOPERATOR EXEC (for example, called EXEC1) or a TSO
CLIST running in an TSO address space can call the IMFSUBEX subroutine which will
schedule a second EXEC (for example, called EXEC2). If EXEC2 sets a return code of 4,
the &LASTCC variable would contain a value of 2052. You can use the IMFEXEC EXIT
statement in an EXEC to set the return code.

MSGLVLI|M Optional Specifies the informational WTO messages to be suppressed. The default
issues all WTO messages.

To override the default, code:MSGLVLI(n) to suppress all informational
WTORs.

VTS Optional Causes IMFSUBEX to suppress all messages.

Note: If abbreviations for the keywords are used, they must be separated by blank spaces or commas.

Keyword Required/
Optional

Description
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs95

IT

nd it
t in
The following example shows what happens when processing return codes using the WA
parameter.

If an IMFSUBEX is invoked to schedule an EXEC and the EXEC is not found in the
SYSPROC data set, the return code is 8. If the EXEC is found in the SYSPROC data set a
is scheduled, upon termination, IMFSUBEX adds the value of 2048 to the return code se
the EXEC that terminated.

Submission from a Job Step

To submit an EXEC from a job step:

To submit an EXEC STOPCICS that stops CICS:

ENAME=SMFDUMP
 .
 .
"CALL 'BBI.BBLINK(IMFSUBEX)' 'SS(SSA1) EXEC("ENAME") WAIT(YES)'"
 IF RC LT 2048 THEN
 SAY 'EXEC' ENAME 'NOT SCHEDULED RC='RC
 ELSE
 SAY 'EXEC' ENAME 'SUCCESSFULLY SCHEDULED RC='RC-2048
 .
 .

//stepname EXEC PGM=IMFSUBEX,PARM='parm-string'
//STEPLIB DD DSN=BBI.BBLINK,DISP=SHR

//S1 EXEC PGM=IMFSUBEX,
// PARM='SS(SSA1) EXEC(STOPCICS NOW)'
96 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ode:
To pass different parameters to the EXEC depending on a previous job step's condition c

//BACKUPD JOB (acct info),'BACKUP PROD-DB',other job parms
//*
//* USER PROGRAM BACKS UP THE APPLICATION DATABASES
//*
//STEP1 EXEC PGM=userprog
//dd1 DD . . .
//dd2 DD . . .
//dd3 DD . . .
//*
//* BACKUP OK> RESTART DATABASES IN ONLINE SYSTEM
//*
//STEP2 EXEC PGM=IMFSUBEX,COND=(0,NE,STEP1),
// PARM='SS(SSA1) EXEC(BACKUPDB 0 OK)'
//*
//* ERROR IN THE BACKUP BUT MOST WORK COMPLETED.
//* ATTEMPT TO RESTART DATABASES IN ONLINE SYSTEM,
//* SEND MESSAGE TO WARNING SCREEN
//*
//STEP3 EXEC PGM=IMFSUBEX,COND=(8,NE,STEP1),
// PARM='SS(SSA1) EXEC(BACKUPDB 8 ERROR)'
//*
//* BACKUP ABENDED> IF DAYTIME, SEND MESSAGE TO
//* APPLICATION PROGRAMER WITH CICS SEND. IF
//* NOT, SEND MESSAGE TO WARNING SCREEN.
//*
//STEP4 EXEC PGM=IMFSUBEX,COND=ONLY,
// PARM='SS(SSA1) EXEC(BACKUPDB ABEND FAILED)'
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs97

ed
Submission from a TSO Session

From a TSO session, there are two ways to invoke IMFSUBEX:

• With the CALL command:

CALL 'BBI.BBLINK(IMFSUBEX)' 'parm-string'

• As a TSO command:

IMFSUBEX parm-string

For example, to start the PAYROLL application from a TSO CLIST, you can use either a
CALL command:

CALL 'BBI.BBLINK(IMFSUBEX)' 'SS(SSA1) EXEC(PAYROLL START)'

or a TSO command:

IMFSUBEX SS(SSA1) EXEC(PAYROLL START)

Submission from within Another Program

IMFSUBEX can be called from within another program. IMFSUBEX need not be authoriz
for this by the MVS Authorized Program Facility. The AutoOPERATOR BBLINK library
must be in the STEPLIB concatenation. It should be the last library to avoid any negative
impact on performance.

The first example is an Assembler Language example; the second is a COBOL.

With COBOL, a dynamic call is required.

 .
 .
 MAIN010 DS 0H
 LINK EP=IMFSUBEX,PARAM=(STRING)
 .
 .
 STRING DC C'SS(*) EXEC(SSTATUS)',x'00'

 .
 .
 DATA DIVISION.
 01 PARM-STRING.
 05 PARM-DATA PIC X(30)
 VALUE 'SS(*) EXEC(STOPDB IIDB002A)'.
 05 PARM-END PIC X(1) VALUE LOW-VALUE.
 01 IMFSUBEX PIC X(8) VALUE 'IMFSUBEX'
 .
 .
 PROCEDURE DIVISION.
 .
 .
 CALL IMFSUBEX USING PARM-STRING.
98 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 hex

e
y
n

Note: The parameter string can have up to a total of 256 bytes with the last byte being
'00'.

Testing EXECs

You can use the information from any of the following sections and test your EXEC befor
you implement it as a BBPROC member. AutoOPERATOR also offers a full testing facilit
for you to test EXECs. See Chapter 13, “Testing and Debugging EXECs Interactively” o
page 411.

However, you can also invoke your EXECs and minimize the effect they might have by
employing the techniques in the following sections.

The techniques provide you with a few ways to examine your EXECs:

You can execute an EXEC... See...

And not issue certain IMFEXEC statements, thereby
minimizing impact of certain EXECs to your system

“Testing EXECs with IMFEXEC
CNTL NOCMD Statements” on
page 100

And examine variable substitution in the BBI-SS
PAS Journal to see if variables are resolving
correctly

“Testing EXEC with REXX
Statement TRACE R” on page 101
and “Testing EXECs with
SHARED Variables” on page 102

And not issue any WTOs you might have included “Testing EXECs without Issuing
WTOs” on page 103
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs99

he

e

vate
VS

ates

is
Testing EXECs with IMFEXEC CNTL NOCMD Statements

By including the IMFEXEC statement IMFEXEC CNTL NOCMD, you can write an EXEC
and run the EXEC on your system without actually executing the actions specified with t
following IMFEXEC statements:

• IMFEXEC CMD
• IMFEXEC CICSTRAN
• IMFEXEC IMSTRAN
• IMFEXEC SUBMIT
• IMFEXEC RES EXIT
• IMFEXEC RES MCMD
• IMFEXEC RES VMCMD

Refer to “Using the IMFEXEC Statements” on page 237 for more information about thes
individual statements.

For example, you might use the IMFEXEC CMD to issue an MVS command, such as acti
a VTAM terminal, in an EXEC. You can execute the EXEC and choose not to issue the M
command by including the IMFEXEC statement:

"IMFEXEC CNTL NOCMD"

in the EXEC, prior to the IMFEXEC CMD statement.

You can track the results of the EXEC by examining the BBI-SS PAS Journal which indic
that the MVS command was not executed because of the IMFEXEC CNTL NOCMD
statement.

Example

The following is a short example of how you might use IMFEXEC CNTL NOCMD.

The MVS command to vary VTAM terminal BB010A will not be executed when this EXEC
invoked. In the BBI-SS PAS Journal, you will see a message that looks like:

"IMFEXEC CNTL NOCMD"
"IMFEXEC CMD #V NET,ACT,ID=BB010A"

Figure 14. Example of Using IMFEXEC CNTL NOCMD

EM1101I FOLLOWING COMMAND BYPASSED DUE TO TEST MODE:
 IMFEXEC CMD #V NET,ACT,ID=BB010A

Figure 15. Example 1 of BBI-SS PAS Journal Entry
100 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

by

of an

 the
C
s you
r to

s to
Testing EXEC-initiated EXECs with IMFEXEC CNTL NOCMD GLOBAL statements

You can test an EXEC-initiated EXEC and not execute the following IMFEXEC statements
using the IMFEXEC CNTL NOCMD statement with the parameter GLOBAL

• IMFEXEC CMD
• IMFEXEC CICSTRAN
• IMFEXEC IMSTRAN
• IMFEXEC SUBMIT
• IMFEXEC RES EXIT
• IMFEXEC RES MCMD
• IMFEXEC RES VMCMD

The statement:

"IMFEXEC CNTL NOCMD GLOBAL"

will prevent these statements from being executed in the calling and in the called EXEC
EXEC-initiated EXEC.

Testing EXEC with REXX Statement TRACE R

By using the REXX statement TRACE R in your EXEC, you can see all the statements in
EXEC written to the BBI-SS PAS Journal and all the TSO variables resolved as the EXE
executes. This is useful if you want to insure that your TSO variables are being resolved a
expected. For a complete discussion for using TRACE R to debug your REXX EXECs, refe
TSO Extensions Version 2: REXX/MVS User’s Guide.

Enter the statement:

TRACE R

at the line of the EXEC where you want to begin this test.

For example, if you were to invoke an EXEC called CALLRSTX and pass two parameter
it, type:

%CALLRSTX USER1 DETAIL

at any Command line.
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs101

ere
e 5
f the

into
ing

m,
The following is an example of the substitution that is logged to the Journal:

In this BBI-SS PAS Journal entry, you can see the substitution for the ARG statement wh
the values you used to invoke the EXEC are passed to the ARG statement at line 3). Lin
shows a comment from the REXX EXEC and lines 6 and 7 show the actual substitution o
variables.

Testing EXECs with SHARED Variables

Another technique you might use is to use the IMFEXEC VPUT statement to put variables
the SHARED variable pool instead of the LOCAL variable pool. For example, instead of us
this statement:

"IMFEXEC VPUT (WORD1 WORD2 WORD4) LOCAL"

you can use the following statement:

"IMFEXEC VPUT (WORD1 WORD2 WORD4) SHARED"

By placing the variables WORD1, WORD2, and WORD3 to the SHARED pool, you can
verify the values that were substituted. Use the command:

.D V SHARED

to see how the variables were resolved in the SHARED pool. Once you have verified the
you can then adjust your EXEC to put the variables back to the LOCAL pool.

14:59:24 EM0025I FOLLOWING MSG ISSUED FOR EXEC .. CALLRSTX ..
14:59:24 3 *-* ARG NAME PARM1 DETAIL GARBAGE
14:59:24 >>> "CALLRSTX"
14:59:24 >>> "USER1"
14:59:24 >>> "DETAIL"
14:59:24 5 *-* /* DISPLAY THE INPUT PARAMETERS */
14:59:24 6 *-* IMFEXEC MSG 'PARM1 =' PARM1
14:59:24 >>> "IMFEXEC MSG PARM1 = USER1"
14:59:24 PARM1 = USER1
14:59:25 7 *-* IMFEXEC MSG 'DETAIL =' DETAIL
14:59:25 >>> "IMFEXEC MSG DETAIL = DETAIL"
14:59:25 DETAIL = DETAIL

Figure 16. Example 2 of BBI-SS PAS Journal Entry
102 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

C

er
 as

X
time.

lled
lled
Testing EXECs without Issuing WTOs

If you are writing EXECs with the IMFEXEC WTO statement and you want to run your EXE
without actually issuing the WTO, replace the IMFEXEC WTO statement with IMFEXEC
MSG and the message will be written to the BBI-SS PAS Journal.

For example, if you have the following statement:

"IMFEXEC WTO 'THE WORLD IS COMING TO AN END' DESC(2)"

you can comment it out with comment marks (/*, */) and use:

"IMFEXEC MSG 'THE WORLD IS COMING TO AN END'"

This message would be written to the BBI-SS PAS Journal.

REXX EXEC Considerations

If you have the IBM REXX Compiler installed at your site, AutoOPERATOR supports
tokenized REXX EXECs with the following considerations:

• The EXEC Management application doesnot display documentation (DOC) fields for
tokenized REXX EXECs in its display fields.

All comments are removed from the REXX EXEC by the compiler.

• The tokenized REXX EXECs must be stored in a SYSPROC library concatenation.

AutoOPERATOR does not support compiled REXX EXECs.

You can expect significant performance gains when you use tokenized REXX EXECs ov
interpreted EXECs. These gains, however, depend on the number of external calls (such
IMFEXEC commands) or subroutines used.

Wherever possible, REXX functions and subroutines should be built into the parent REX
EXEC. This is much more efficient because it eliminates the function or subroutine load

Once a REXX EXEC has been analyzed for performance and optimized, subroutines ca
many times using IMFEXEC SELECT EXEC can be copied internally to the parent and ca
using REXX CALL.

BBSAMP member AOXCPUST contains the tokenized version of AOXCPUSI.
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs103

s
he use

 be

ation

90

r

Minimizing EXEC Processing Time

In general, BMC Software recommends you use Rules to perform basic automation task
whenever possible. Rules are less prone to have errors and use less CPU than EXECs. T
of EXECs should be considered only after you have determined that the automation task
cannot be accomplished with a Rule.

For AutoOPERATOR to perform automation efficiently with EXECs, the subsystem must
tuned to process EXECs as quickly as possible. The desirable level of throughput (or the
number of EXECs processed per minute) for each site varies, depending on your autom
requirements and the design of the EXECs.

There are some things you can do to ensure EXECs run more efficiently:

• Fix the dispatching priority of the subsystem.

The subsystem (SS) must be run at afixed dispatching priority. The priority of the SS
must be higher than (or equal to) the regions that AutoOPERATOR is managing (for
example: CICS, IMS, JES2). This ensures AutoOPERATOR can quickly respond to
events in these regions.

• Allocate the correct number of EXEC threads.

Adjust the number of EXEC threads (with the MaxNorm and MaxHigh parameters in
BBPARM member AAOEXP00) to theminimum number required to achieve the level of
throughput you want.

• Use the OS/390 Virtual Lookaside Facility (VLF) service which is available with OS/3
(MVS Version 3 and later).

Using VLF allows AutoOPERATOR to perform EXEC processing with a minimum of
I/O activity, and reduced I/O activity leads to less system overhead and improved
performance.

Refer to the IBM publication OS/390 Initialization and Tuning Reference for information
about the VLF service. Refer to “Using VLF to Improve Performance” on page 105 fo
more information about AutoOPERATOR EXECs and VLF.
104 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

re all

 all

ECs

in the
irectly
ntly

e VLF

n by

ent

lity
Using VLF to Improve Performance

This section contains information about AutoOPERATOR and VLF.

Implementing VLF

BMC Software recommends that you store your EXECs in VLF using the IKJEXEC VLF
class. For more information about the IKJEXEC class, refer to the IBM publicationTSO
Extensions Version 2, Customization. This manual also contains some information about
implementation considerations that you should review.

Because there are some known problems with running VLF and TSO, you must make su
recommended IBM PTFs are applied.

VLF and EXECs

Ordinarily when you execute an EXEC, for each EXEC, TSO will OPEN SYSPROC, read
the EXEC records into memory, and CLOSE SYSPROC. If the EXEC is present in VLF
cache, then these three operations are eliminated, which means there is a considerable
reduction in both CPU and I/O (and less DASD device and channel contention) when EX
are in the VLF cache.

This is because VLF caches individual SYSPROC data sets. You must determine the
appropriate amount of virtual storage to devote to the cache for this VLF class, which is
specified with the MAXVIRT parameter. The MAXVIRT parameter is documented in the
IBM publicationMVS/ESA Initialization and Tuning Reference.

Note that if the specified cache is too small and too many EXECs are cached, thrashing
cache can occur and performance could actually be worse than when EXECs are read d
from DASD. One possible remedy is for you to move the EXECs that are used more freque
into a smaller data set, place this data set first in the SYSPROC concatenation, and hav
cache this data set.

Using the SYSEXEC DD: If the SYSEXEC DD is present, TSO will search it first for each
EXEC, andVLF has no effect on SYSEXEC. Therefore, BMC Software recommends you do
not use the SYSEXEC DD.

Important Note

Loading your EXECs from VLF is transparent to the EXEC Management application.
However, EXECs stored in VLF cache cannot be tested more than once per SS sessio
the AutoOPERATOR EXEC Testing Facility.

The first time you issue the line commandT to test the EXEC, the Testing Facility gets
control of the EXEC with TSO OPEN SYSPROC and the test is run. However, subsequ
attempts to test the EXEC cause the EXEC to be scheduled and the Testing Facility is
bypassed.

This occurs because once the EXEC is read into the VLF cache, the EXEC Testing Faci
is not able to get control over the execution of the EXEC.
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs105

d
Restrictions: Note carefully the restrictions and considerations for updating VLF cache
libraries, both on single and multiple MVS images. For more information, refer to the IBM
publicationTSO Extensions Version 2, Command Reference for documentation for the TSO
VLFNOTE command.
106 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

s if

2 as

ans)

tion
Chapter 7. Accessing DB2 from AutoOPERATOR

This chapter describes how you can access DB2 from AutoOPERATOR with REXX EXEC
you have the BMC Software product RxD2/LINK product installed.

Access DB2 from REXX EXECs with RxD2/LINK

If RxD2/LINK is installed in the BBI-SS PAS, AutoOPERATOR REXX EXECs can issue
dynamic SQLs to access and manipulate DB2 data. The REXX EXEC can ADDRESS DB
it can ADDRESS MVS.

This added facility allows:

• Accessing the DB2 catalog for information about DB2 objects (such as tables and pl

• Accessing other DB2 tables to read external data that can govern AutoOPERATOR
procedures

• Storing data collected by the EXECs for later queries and reporting using the full func
of SQL

Refer to theRxD2/LINK User Guide and Referencefor more information about customization
and usage.

Note: The BBI-SS PAS requires authorization for the DB2 functions to be performed.
Chapter 7. Accessing DB2 from AutoOPERATOR107

h

he
s

e
s

le
RxD2/LINK Common Functions for REXX EXECs

Several EXECs are delivered with RxD2/LINK to provide commonly used functions and
reduce user coding. They are ready to use and can be invoked from any other EXEC.

Table 6. Common Function EXECs

Common Function EXECs Description

 RXBKLINE(mxlen,iline) This EXEC truncates the character text in ILINE at a word boundary to a lengt
no greater than MXLEN. It is useful in displaying a long SQL statement.

If either argument is null, a null string is returned.

RXBKLINE(9,'This is an example') -> 'This is'
RXBKLINE(9,'This too,is an example') -> 'This too,'
RXBKLINE(72,'This is an example') -> 'This is an example'

 RXQCHAR(wname,wdata) This EXEC builds a predicate for the character-type column WNAME from t
string entered as a qualifier in WDATA. It is used to generate SQL predicate
from user input specifying a selection qualifier for a column of a table.

RXQCHAR('NAME','DSN') -> "NAME = 'DSN'"
RXQCHAR('NAME','DSN*') -> "NAME LIKE 'DSN%'"
RXQCHAR('NAME','D+N') -> "NAME LIKE 'D_N'"
RXQCHAR('NAME','NULL') -> "NAME IS NULL'"
RXQCHAR('NAME','^NULL') -> "NAME IS NOT NULL"
RXQCHAR('NAME',"^='DSN'") -> "NAME ^= 'DSN'"
RXQCHAR('NAME',"<'DSN'") -> "NAME < 'DSN'"
RXQCHAR('NAME',">'DSN'") -> "NAME > 'DSN'"

RXQNUM(wname,wdata) This EXEC builds a predicate for the numeric-type column WNAME from th
string entered as a qualifier in WDATA. It is used to generate SQL predicate
from user input specifying a selection qualifier for a column of a table.

RXQNUM('NAME','123') -> "NAME = 123'"
RXQNUM('NAME','<123') -> "NAME < 123'"
RXQNUM('NAME','^=123') -> "NAME ^= 123'"

RXSAMPEX This is a sample EXEC to process SQL statements or DB2 commands and
display the results in line mode. It does not require ISPF and therefore is usab
in any address space; for example, batch jobs, NetView, or AutoOPERATOR
EXECs.

Note: The RXSAMPEX EXEC is invoked by the two sample batch jobs,
RXBATSQL and RXBATCMD, that are distributed as members in
BBSAMP.
108 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

in

DS
et
RXSETSQL This EXEC constructs an SQL statement from the text pointed to by a cursor
an ISPF/PDF edit panel.

SQL = RXSETSQL()

A = WORDPOS('INTO',SQL)

RXVODS(wdsn) This EXEC verifies that the data set name specified in WDSN is valid. It
checks that the data set exists and that the data set is either sequential or a P
with a member name specified. The EXEC is used to verify an output data s
before the data set is used.

 WMSG = RXVODS($VLSTDS)
 IF WMSG = 'OK' THEN DO
 "ALLOC DD(LCOUT) DA("$VLSTDS") SHR REUSE"
 IF RC = 0 THEN NOP
 ELSE WMSG = 'ALLOC ERROR' RC
 END /* WMSG = OK THEN */

Table 6. Common Function EXECs (Continued)

Common Function EXECs Description
Chapter 7. Accessing DB2 from AutoOPERATOR109

RxD2/LINK Special Functions for REXX EXECs

Several special functions are provided with RxD2/LINK that are required or useful when
accessing DB2.

In REXX, you invoke a function by issuing:

V1 = FUNC(ARG1,ARG2)

where V1 is the variable into which the function FUNC places the result.

Table 7. Special Functions

Special Function Description

CONVSTCK(tod) Converts the 8-byte TOD clock into display format of YYYYDDD HHMMSSTH.
Valid from 1/1/1988 onward. The 8-byte TOD format is such that bit 51 equals 1
microsecond (see the IBM publication370 Principles of Operations).

TSTMP = 'A42AE3F94CE5BB31'X
SAY "TIMESTAMP=" CONVSTCK(TSTMP)

DEFAULT None

RETURN 'value' if function completes successfully

NOGO 'reason' if function fails for the reason given

CTOD(tod) Converts the 8-byte TOD clock time into display format of HHMMSSTH. The 8-byte
TOD format is such that bit 51 equals 1 microsecond (see the IBM publication370
Principles of Operations).

CPUT = '0000000160B79C00'X
SAY "CPUT=" CTOD(CPUT)

DEFAULT None

RETURN 'value' if function completes successfully

NOGO 'reason' if function fails for the reason given

F2C(f) Do a floating point conversion on variable f and return the floating point number in
display format.

/* TEST F2C */
A = '4498765432100000'X
SAY "F2C=" F2C(A)

DEFAULT None

RETURN 'value' if function completes successfully

NOGO if function fails
110 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

nt

e.

l

bal

at.
GBLVAR
(GETV,varname)
(SETV,varname)
(DROP,varname)
(UPDV,varname)

Create and manage the global variable environment. The global variable environme
is created at first use. Subsequent environment shares the same environment. The
environment is destroyed at the EOT of the task that created the environment.

GETV
Gets the global variable varname and places its content in the local variable varnam

SAY "TESTVAR=" TESTVAR
SAY "GBLVAR('GETV','TESTVAR')=" GBLVAR('GETV','TESTAVR')
SAY "TESTVAR=" TESTVAR

SETV
Gets the local variable varname and creates a global variable varname. If the globa
variable varname already exists, it is not replaced.

TESTVAR= "TEST VARIABLE FOR TEST GBLVAR"
SAY "GBLVAR('SETV','TESTVAR')=" GBLVAR('SETV','TESTVAR')

DROP
Drops the global variable varname.

UPDV
Gets the local variable varname and updates the global variable varname. If the glo
variable varname does not exist, the function is treated like "SETV".

DEFAULT None

RETURN OK if function completes successfully

OK 'warn' if function completes with a warning

NOGO 'reason' if function fails for the reason given

P2C(p) Do an unpack on variable p and return the packed decimal number in display form

/* TEST P2C */
A = '123456789C'X
SAY "P2C=" P2C(A)

DEFAULT None

RETURN 'value' if function completes successfully

NOGO if function fails

Table 7. Special Functions (Continued)

Special Function Description
Chapter 7. Accessing DB2 from AutoOPERATOR111

gm
e

.1
UENV(hcename,pgm) Identify to REXX Host Command Environment (HCE) called hcename, such that p
will receive control for ADDRESS hcename. The hcename currently is required to b
DB2.

SK = UENV(DB2)
IF SK ^= "OK" THEN DO
 SAY "UNABLE TO ENABLE RXDB2"
 EXIT 16
 END

DEFAULT hcename = DB2

pgm = RXDB2

RETURN OK if function completes successfully

NOGO if function fails

VARSPF(varname) A compound variable (AA.1) cannot be used in an ISPF dialog. Function
VARSPF(AA.1) creates a new simple variable AA1 containing the same data as AA
so it can be used in an ISPF dialog.

The function first compresses out the period(s) in the compound variable name and
then ensures that the resulting variable name is no more than 8 characters long.

IF DATATYPE(SQLEMSG.0) = NUM THEN
 DO I = 1 TO SQLEMSG.0
 SQLEM.I = SPACE(SQLEMSG.I)
 A = VARSPF("SQLEM."I)
 END /* I LOOP */

DEFAULT None

RETURN OK if function completes successfully

NOGO if function fails

TRUNCATED if function has to truncate the variable name

WAITSEC(n) Wait n seconds before continuing to process.

DO I = 1 TO 5
 A = WAITSEC(2) /* WAIT 2 SECONDS */
 SAY "LOOP COUNT=" I "TIME=" TIME()
 END

DEFAULT n = 5 (seconds)

RETURN OK if function completes successfully

NOGO if function fails

Table 7. Special Functions (Continued)

Special Function Description
112 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

s.

e to

by

 by

the

d by
Chapter 8. Interacting with VTAM-Applications with OSPI

This chapter describes the AutoOPERATOR Open Systems Procedural Interface (OSPI)
feature and how to use to interact with VTAM-based applications and for automation task

Overview

AutoOPERATOR provides the Open Systems Procedural Interface (OSPI) as an interfac
VTAM-based products. OSPI provides a means for REXX- or CLIST-based automation
procedures to interface with any LU2 (3270) VTAM application that uses full screens to
communicate with users.

With OSPI, AutoOPERATOR has logon capabilities and complete access to any VTAM
application's data stream. In this way, AutoOPERATOR can interact with the application
analyzing the output data and issuing the VTAM application's own commands.

By automatically interfacing with critical VTAM applications and simulating a user at a
VTAM terminal, OSPI can communicate with various data center software products and
decrease the number of physical terminals required.

OSPI includes three components:

• IMFEXEC commands that allow EXECs to communicate with VTAM applications

• A Scripting application that automatically generates IMFEXEC command statements
recording your interactions with a terminal

• A Debugging facility

These components are described in the following sections:

• “OSPI Sessions” on page 115 provides a general overview about how the Scripting
application generates OSPI EXECs.

• “OSPI Scripting Application” on page 116 provides detailed information about using
Scripting application.

• “Application Termination” on page 123 describes how to customize EXECs generate
the Scripting application.

• “OSPI Debugging Facilities” on page 126 describes the Debugging facility.
Chapter 8. Interacting with VTAM-Applications with OSPI113

S.
 a

cord

r
he

EC

ould

e

n or
When to Use OSPI

AutoOPERATOR communicates with MVS and its subsystems using standard software
interfaces; for example, the Subsystem Interface (SSI) is used to communicate with MV
However, many VTAM applications do not provide a software interface but require use of
3270 terminal instead.

The OSPI facility provides access from an AutoOPERATOR EXEC to these VTAM
applications without requiring a physical 3270 terminal. OSPI allowsmost 3270-operator
actions to be emulated by an EXEC. Use this facility when you need to access VTAM
applications that ordinarily require an operator to actually log on to a 3270 terminal.

How to Use OSPI

The first step in automating a function using OSPI is to use the Scripting application to re
the appropriate interactions with a VTAM application in an EXEC. The generated EXEC
contains only OSPI IMFEXEC commands. It will not contain any conditional logic or othe
commands. Refer to “Using the IMFEXEC Statements” on page 237 for descriptions of t
OSPI IMFEXEC command statements.

Depending upon the function being implemented, you may need to further customize the
generated EXEC by combining the appropriate logic and commands with the OSPI IMFEX
commands.

After the EXEC has been customized, it is ready to be executed. As with any EXEC, it sh
be thoroughly tested before it is installed into your production system.

Customization Required to Use OSPI

A session between OSPI and a VTAM application requires that OSPI function as a 3270
terminal. For OSPI to do this, some OSPI virtual terminals must be defined to VTAM. In
addition, some applications, such as CICS and IMS, might require local definitions for th
OSPI terminals. Finally, your site must be running a release of VTAM of V3 or higher.

These definitions must be implemented and activated prior to using the Scripting applicatio
executing an OSPI EXEC. See theMAINVIEW AutoOPERATOR Customization Guide for
more information about VTAM and application definitions required for OSPI virtual
terminals.
114 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

e both
 are

tion

anel
pting
e
d in

rom
he

 until

s as a

on
t is

ta set
OSPI Sessions

There are two types of OSPI sessions: scripting sessions and EXEC sessions. You can us
types of sessions when using OSPI to automate a function. Normally, scripting sessions
used first to record the appropriate interactions with VTAM applications in EXECs. Then,
EXEC sessions are used when the functions are automatically performed by
AutoOPERATOR.

All OSPI sessions follow the same basic flow regardless of the session type, the applica
they are interfacing with, or the task they are performing:

1. A session is established between an OSPI virtual terminal and a VTAM application.

2. Data is then exchanged between the virtual terminal and the application.

3. The session is terminated.

All of these tasks are accomplished using either the Scripting application or IMFEXEC
command statements in an EXEC.

Establishing a Session

To initiate a scripting session, specify the parameters on the OSPI Script Development p
and press ENTER. The Scripting application uses these parameters to establish the scri
session and to generate a corresponding IMFEXEC LOGON command. This enables th
generated EXEC to log on to the same VTAM application with the same parameters use
the scripting session.

Exchanging Data

After a successful logon, the Scripting application automatically receives the first buffer f
the VTAM application. The first panel output by the VTAM application is displayed under t
TS.

No additional IMFEXEC commands are generated at this point because the previously
generated IMFEXEC LOGON command automatically receives the output sent by the
application. When the generated EXEC is executed, control is not returned to the EXEC
the first complete buffer image is received and available for processing by the EXEC.

As you interact with the application by sending and receiving new data, the Scripting
application records these actions using IMFEXEC TYPE and IMFEXEC TRANSMIT
commands. This enables the generated EXEC to automatically perform the same function
real terminal user might.

Terminating a Session

When you terminate the session with the VTAM application, the OSPI Session Terminati
panel is displayed. You then have the option of saving or cancelling the script. If the scrip
saved, an IMFEXEC LOGOFF command is generated, the EXEC is saved in the first da
of your SYSPROC concatenation, and the command.RESET BLDL SYSPROC is automatically
done.
Chapter 8. Interacting with VTAM-Applications with OSPI115

 of

N
ed.

t

OSPI Scripting Application

User interaction with OSPI is simplified with the Scripting application. The Scripting
application records your keystrokes as you make them, and you can use this Scripting
application to create complex procedures to drive 3270 applications without writing a line
procedural code.

The OSPI Scripting application can create procedures in either CLIST or REXX.

Accessing the OSPI Scripting Application

Access the Scripting application by selecting option 7, OSPI, from the PRIMARY OPTIO
MENU. The OSPI Script Development panel, shown in Figure 17 on page 117, is display

The following topics provide details about accessing a VTAM application using the OSPI
Scripting application.

To learn about... See...

Specifying the appropriate data for establishing a session “OSPI Script Developmen
Panel” on page 117

Differences you may see when accessing an application
under the Scripting application versus directly through
VTAM

“Interacting with the
Application” on page 119

Making data in the terminal buffer available to a generated
EXEC

“Retrieving Screen Data into
Variables” on page 122

The options available for ending an OSPI session with an
application

“Application Termination” on
page 123
116 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

lication
on.

is

lish
e

efore
y PF
PF

ch

 pad.
OSPI Script Development Panel

The OSPI Script Development Panel is used to specify the parameters, such as the app
to be accessed and the terminal type to be emulated, for establishing the scripting sessi
Figure 17 shows default values in all fields.

Following is a description of each field:

Member name
Name to be used when the generated EXEC is stored in the SYSPROC data set.

Note: If multiple data sets are concatenated to the SYSPROC DD, the member
stored in the first data set in the concatenation.

Application for LOGON
Name of the application (as specified in a VTAM APPL statement) you want to estab
a session with. VTAM interpret tables are not used so this name may differ from th
name you enter when logging on at a terminal.

Overwrite existing member
If the member named in theMember name field already exists, verify that you want to
overwrite it.

Hot key
ISPF may process certain program function (PF) keys, such as SPLIT and SWAP, b
passing them to OSPI. For this reason, you must use the OSPI hot key in place of an
or PA keys. The default hot key is PF11. You can reassign it to any non-ISPF specific
key.

When you press the hot key, a hot key pad is displayed to allow you to specify whi
PF/PA keystroke should be passed to the application.

See “Program Function Keys” on page 120 for information about using the hot key

BMC SOFTWARE ------------------ OSPI Script Development --------- AutoOPERATOR
COMMAND ===> TGT ===> SYSB
 DATE --- 01/01/15
 TIME --- 13:15:51

 To begin a Scripting Session, specify the following and press ENTER

 Member name ===> OSPI Application for LOGON ===>

 Overwrite existing member ===> Y Hot key ===> PF 11 (01-12)

 Logmode to use ===> D6327802 Debug ===> N

 User data ===>

 ACB to use ===> Language Option ===> CLIST (REXX/CLIST)

 Process initial receive ===> Y

Press END to abort request

Figure 17. OSPI Script Development Panel
Chapter 8. Interacting with VTAM-Applications with OSPI117

ded
l
een

de.

e

.

 is
not

fore
s in

ation
(for

ore

fied. If

 the

“OSPI
or
Logmode to use
The logmode associates certain terminal characteristics, such as support for exten
attributes (color, reverse video, and so on) and screen size, with the OSPI termina
emulation. The type of terminal that is emulated may affect the application displays s
by the scripting user and the data available to the generated EXEC. See “Extended
Attributes” on page 119 for more information about selecting an appropriate logmo

The logmode must be a valid VTAM MODEENT in the MODETAB associated with th
OSPI ACB (specified in theACB to USE field). The default is a 3278 Model 2,
specified asD6327802. This is the recommended logmode to use.

Debug
Specifies whether or not debugging information will be written to the BBI-SS PAS
Journal log and to the OSPISNAP data set.

User data
Text (such as userid) to be passed to the application during session establishment

ACB to use
ACB to be used for the OSPI virtual terminal. If you do not specify an ACB, an ACB
selected from the OSPI ACB pool. The ACB generated on this panel is intentionally
carried forward into the generated EXEC.

See theMAINVIEW AutoOPERATOR Customization Guidefor more information about
ACB definitions required for OSPI virtual terminals.

Language Option
Specifies the CLIST language to be used in the generated EXEC where:

– Specifying REXX causes a REXX EXEC to be generated.

– Specifying CLIST causes a TSO CLIST to be generated.

Process Initial Receive
Indicates whether or not OSPI should attempt to receive an initial panel (buffer) be
allowing data to be entered and sent to the application. The default is Y and result
OSPI waiting for the first panel (buffer) to be received from the application before
allowing the terminal operator to enter data.

In most cases, the default should be used. However, when logging on to an applic
that does not display an initial panel before allowing the terminal user to enter data
example, a CICS system without a "Good Morning" transaction), you must specifyN to
avoid an unending wait. Refer to “Receive Complete Detection” on page 121 for m
information.

After you press ENTER, OSPI attempts to establish a session using the parameters speci
a session is successfully established, the first panel output by the VTAM application is
displayed under the TS. You can now interact with the application to perform and record
function you want to automate with an OSPI EXEC.

If a session cannot be established, the OSPI Session Termination panel is displayed. See
Session Termination Panel” on page 127 for information about interpreting the VTAM err
codes displayed on the panel.
118 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

al to
ces

ta
uch as

n the

the
 the

E
lanks
e

Interacting with the Application

Most of the time, accessing an application under the OSPI Scripting application is identic
accessing the same application directly through VTAM. However, there are some differen
in the following areas:

• 3270 attributes, such as extended color or extended highlighting

• Program function (PF) keys

• ISPF jump function

• Screen size and usage

• Receive complete detection

3270 Attributes

Displays that contain extended color or extended highlighting attributes may look slightly
different when executing under OSPI because OSPI does not honor these attributes. Da
streams containing these attributes are not properly interpreted and may cause errors, s
treating fields with extended attributes as protected.

These attributes are not honored because extended attributes do not occupy a position i
screen buffer and, therefore, OSPI EXECs cannot benefit from their settings.

Extended
Attributes

Extended Attributes: OSPI terminal emulation uses the characteristics associated with
terminal LOGMODE specified on the OSPI Script Development panel and, ultimately, on
generated IMFEXEC LOGON command. Therefore, always choose a LOGMODE that
designates the least amount of terminal capabilities possible.

Some applications use reverse video to create bars on a screen whenever the LOGMOD
indicates that the terminal supports extended attributes. OSPI EXECs would simply see b
in the field that contained the reverse video bars. However, the same application may us
character data instead of the reverse video bars when the LOGMODE indicates that the
terminal does not support extended attributes.
Chapter 8. Interacting with VTAM-Applications with OSPI119

rtain
r this
lt hot

8, is
it to

be

ication
t to the
Program Function Keys

The OSPI Scripting application may execute under ISPF, and thus ISPF may process ce
program function (PF) keys, such as SPLIT and SWAP, before passing them to OSPI. Fo
reason, it is necessary to use the OSPI hot key in place of any PF or PA keys. The defau
key is PF11. It may be reassigned to any non-ISPF specific PF key.

When you press the hot key, the OSPI Transmission Keystroke panel, shown in Figure 1
displayed. Enter the option number associated with the PF or PA key you want to transm
the application.

ISPF Jump Function

The OSPI Scripting application is designed to execute under ISPF. Therefore, you must
careful when entering an equal sign (=) into any application screen OSPI displays.

When an equal sign is entered under ISPF, ISPF passes PF3 to the application as an ind
that the application should terminate. OSPI does not process the PF3 but instead passes i
application being scripted. ISPF continues passing PF3 until OSPI terminates. OSPI will
continue passing PF3 to the scripted application and will never terminate. Therefore,
attempting to enter the ISPF equal sign under the Scripting applicationmay cause the TS to
loop.

BMC Software ------------- OSPI transmission keystroke ---------- AutoOPERATOR
COMMAND ===>

 Please select action from list below:

 Keystrokes:
 PF1 - 1 PF13 - 13 ENTER - 25
 PF2 - 2 PF14 - 14 CLEAR - 26
 PF3 - 3 PF15 - 15
 PF4 - 4 PF16 - 16 PA1 - 27
 PF5 - 5 PF17 - 17 PA2 - 28
 PF6 - 6 PF18 - 18 PA3 - 29
 PF7 - 7 PF19 - 19
 PF8 - 8 PF20 - 20 Other Options:
 PF9 - 9 PF21 - 21
 PF10 - 10 PF22 - 22 Cancel Session - 30
 PF11 - 11 PF23 - 23 Read variable - 31
 PF12 - 12 PF24 - 24 Attempt read - 32

 Variable name ===>
 SHARED variable name ===>
 Select Option ===>

Figure 18. OSPI Transmission Keystroke Panel
120 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

as
id
tes, a

om

o not
right

lumn

umn
inal

ically
he

DI)
If an
quest

sued.

d.
ata

MS.
Screen Size and Usage

The OSPI Scripting application is designed to execute under ISPF. An application, such
OSPI, executing under ISPF must define the attributes associated with its display to avo
having a random attribute value assigned. Since ISPF does not support extended attribu
position on the screen is always required to specify an attribute. The OSPI Scripting
application uses line one, column one to specify an attribute and avoid having some rand
assignment.

With the Scripting application, you cannot enter data in line one, column one. Data is als
displayed in line one, column one. The first 80 bytes of output are shifted one byte to the
and byte 80 is not displayed if the buffer image to be displayed does not start out with an
attribute byte. The date is shifted back one byte to the left before transmission to the
application.

This restriction does not apply to OSPI EXECs. If necessary, EXECs generated by the
Scripting application can be manually edited to specify that data be entered in row one, co
one.

In addition, OSPI can only support screen sizes between 24 lines and 43 lines with a col
width of 80. Any other screen size specified in a LOGMODE used by an OSPI virtual term
causes errors.

Receive Complete Detection

When you send a new screen of data to the application, the Scripting application automat
tries to receive new data from the application. OSPI does not unlock the keyboard until t
application has finished sending data.

Depending on the protocol used by an application, either the Change Direction Indicator (C
or End Bracket (EB) is used to determine when the application is finished sending data.
application sends one of these indicators prematurely, it may be necessary to explicitly re
that an additional receive be issued to receive data sent after the erroneous CDI or EB.

The OSPI Transmission Keystroke panel is used to request that an additional receive be is
To do this:

1. Use the OSPI hot key to access the keystroke panel.

2. Select option 32, ATTEMPT READ, when the panel is displayed.

If ATTEMPT READ is not issued, the data sent after the CDI/EB is not retrieved until
after the next transmission of data from OSPI to the application.

Each time an ATTEMPT READ is issued, an IMFEXEC RECEIVE command is generate
IMFEXEC RECEIVE is not normally needed because OSPI automatically receives new d
after IMFEXEC TRANSMIT.

Examples of applications that may require this special processing are Netview and VM/C
Chapter 8. Interacting with VTAM-Applications with OSPI121

ns,
o

in the
as the

e hot

s
ss
 row,
e; for

t the
g the
y.
Retrieving Screen Data into Variables

In addition to the IMFEXEC commands necessary to communicate with VTAM applicatio
the Scripting application can also generate the IMFEXEC SCAN commands necessary t
retrieve data from the screen buffer into a variable.

You can use the OSPI Transmission Keystroke panel to request that some specific data
screen buffer be read into a variable. This panel is accessed using the PF key designated
OSPI hot key (default is PF11).

When the OSPI Transmission Keystroke panel is displayed, enter 31 (theRead Variable
option) in theSelect Option field of the panel. Also type in the name of the variable you
want to create in theVariable name field. This causes data to be read into a variable. The
default variable name is OSIVAR.

You can also specify a SHARED variable name in theSHARED variable name field which
places the data into the SHARED variable using the given name.

When you press ENTER, the application screen that was displayed when you pressed th
key is redisplayed. However, this display is used only to tell OSPI which data you want to
retrieve from the screen. You cannot interact with the application at this point.

Position the cursor to the beginning of the data you want to read into a variable and pres
ENTER. Now position the cursor to the last position of the data you want to read and pre
ENTER. This sequence causes OSPI to generate an IMFEXEC SCAN command for the
column, and length that was indicated by the cursor in the previously described sequenc
example:

IMFEXEC SCAN SESSION(&OSISESS) ROW(18) COL(6) LENGTH(6) +
 VAR(OSIVAR)

Of course, OSPI does not know how you want to use this data in your EXEC. You must edi
EXEC to make proper use of the data. However, it is much easier to retrieve the data usin
read variable option than by calculating the correct row and column positions manuall
122 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

not

re
 19.

t data
ation

key
an-up
Application Termination

VTAM applications have a variety of methods by which you can request termination. For
example, one application may terminate a session whenlogoff is received and another
application may terminate a session when PF key 2 is received.

Since the data required to request session termination varies by application, OSPI does
know when such a request has been sent.

Each time the Scripting application sends data to a VTAM application, it also attempts to
receive data. This read attempt usually fails after a request to terminate is sent. This failu
causes OSPI to display an error panel. An example of this error panel is shown in Figure

The unsuccessful read looks like a true error to OSPI because it does not know that the las
sent requested application termination. If you receive this panel after you requested applic
termination, no true error occurred and you can ignore the error panel.

Note: You can also terminate a session using option 30, Cancel session, from the hot
pad. However, this is not recommended because the appropriate application cle
may not be performed.

BMC Software ----------------- OSPI Session Termination -------- AutoOPERATOR
COMMAND ===>

 The OSPI session has terminated.

 Outstanding function was: RECEIVE DATA

 VTAM ACB error flag: 00

 Diagnostic information:

 RPL RTN/FDBK=0C0B, SENSE=00000000
 REQ CANCELLED DUE TO SESSION
 THE SESSION HAS BEEN TERMINATED

 Note: The above information may indicate that the session was terminated
 normally or abnormally.

 Press ENTER to display last buffer image, PF3 to save script and return.
 Enter CANCEL to skip script saving.

Figure 19. Example of Error Panel
Chapter 8. Interacting with VTAM-Applications with OSPI123

cord
will

EC

sing
rs,

hese
time

ge.

ET
Customizing OSPI EXECs

The first step in automating a function using OSPI is to use the Scripting application to re
the appropriate interactions with a VTAM application in an EXEC. The generated EXEC
contain only OSPI IMFEXEC commands. It will not contain any conditional logic or other
commands.

Depending upon the function being implemented, you may need to further customize the
generated EXEC by combining the appropriate logic and commands with the OSPI IMFEX
commands. This section provides customization information in the following areas:

• “OSPI Control Variables” on page 124

• “Disconnect/Reconnect Feature” on page 125

• “Establishing Multiple Sessions” on page 125

• “Using Passwords in OSPI EXECs” on page 125

Note: This chapter discusses the OSPI IMFEXEC statements in general terms. See “U
the IMFEXEC Statements” on page 237 for information about specific paramete
return codes, and so on.

OSPI Control Variables

OSPI maintains a set of control variables that indicate the state of each OSPI session. T
control variables are maintained in the EXEC's local variable pool. They are updated each
a new buffer image is received from the application.

 The variables are:

OSISESS Session identifier. Must be used with the SESSION keyword on all OSPI
IMFEXEC commands (except LOGON) to identify the session you are
addressing.

OSIKSTAT Current keyboard status, either LOCKED or UNLOCKED.

OSIAPPL Name of the VTAM application associated with the OSPI session.

OSIROW Current cursor position, 1 to 43.

OSICOL Current cursor position, 1 to 80.

OSILNCNT Number of rows for the terminal type being emulated, 24 to 43.

OSILNnn Each OSILNnn represents one line of the current virtual screen buffer ima
For example, OSILN2 contains line 2 of the current screen buffer image.

Before an EXEC can use one of the variables, it must be retrieved with an IMFEXEC VG
command; for example, IMFEXEC VGET OSISESS LOCAL.
124 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

inated

eter
sion

er.

code

f
.

hes
ared

ue
ined.

ally
n

r, a
are
other

es.

e
r
word

rtup
global
Disconnect/Reconnect Feature

When an EXEC terminates, any OSPI sessions that have been established are either term
or disconnected.

The IMFEXEC LOGOFF command without the DISCONNECT parameter results in a
termination request being sent to the VTAM application. When the DISCONNECT param
is specified, the VTAM session is not terminated and another EXEC may resume the ses
(RECONNECT) by issuing an IMFEXEC LOGON command with the SESSION paramet
The application will not be aware of any DISCONNECT/RECONNECT activity.

When an EXEC tries to reconnect a session, it is important that you check the condition
(IMFCC) after the IMFEXEC LOGON command. Reconnect sometimes fails due to
applications terminating OSPI sessions when no activity occurs within a specified time. I
IMFCC indicates that a reconnect is not successful, you must reestablish a new session

To make use of the DISCONNECT/RECONNECT feature, the EXEC that initially establis
the session must store the session identifier (contained in the OSISESS variable) in a sh
variable. This variable can then be retrieved by subsequent EXECs to reconnect. A uniq
shared variable name must be used for each different session that is concurrently mainta

If an EXEC does not issue an IMFEXEC LOGOFF command, all sessions are automatic
terminated. The result is the same as if explicit IMFEXEC LOGOFF commands had bee
issued for each session.

Establishing Multiple Sessions

An EXEC may establish sessions with multiple VTAM applications concurrently; howeve
different OSPI control variable prefix must be used for each session. If different prefixes
not used for each session, the information for one session overlays the information for an
session.

The default prefix for the OSPI control variables is OSI. The PREFIX keyword on the
IMFEXEC LOGON command allows any three character prefix to be used for the variabl

Using Passwords in OSPI EXECs

Many of the applications that OSPI EXECs will access require passwords for logon. If th
Scripting application is used to create the EXEC, the password is stored in the EXEC. Fo
security reasons, BMC Software recommends that you edit the EXEC to replace the pass
literal with a variable.

One approach for handling this situation is to schedule an EXEC at AutoOPERATOR sta
which requests the operator to enter the password. The password can then be stored in a
variable that can be retrieved by any OSPI EXEC needing access to the application.
Chapter 8. Interacting with VTAM-Applications with OSPI125

tion
nd
 you

olely

or

rnal
ta in a

d,

efit
ee

ECs

be
y

OSPI Debugging Facilities

OSPI provides several facilities to aid in debugging EXECs and scripts.

Return Codes

Each of the IMFEXEC commands that interface with OSPI provides return code informa
in the IMFCC variable. Examining the value of IMFCC after issuing the IMFEXEC comma
can be useful during script development. During this phase, it may even be beneficial for
to record the IMFCC value in the BBI-SS PAS Journal log using the IMFEXEC MSG
command.

After an EXEC has been fully debugged, IMFCC checks or messages that were added s
for debugging purposes should be removed. However, the IMFCC check for certain
IMFEXEC commands should be retained even after development has been completed. F
example, IMFCC after an IMFEXEC LOGON that specifies the SESSION parameter
(reconnect) should always be retained.

Error Messages

Certain error conditions cause OSPI to generate error messages in the BBI-SS PAS Jou
log. For example, error message OS5001E is produced if an attempt is made to enter da
protected field. When a script is not functioning properly, it is always advisable for you to
examine the BBI-SS PAS Journal log for error messages. If an error message is produce
additional information about the error can be found using the BBI Message application.

OSPI Control Variables

OSPI maintains a set of variables for each active or disconnected session. You may ben
from examining the value of one or more of these variables during EXEC development. S
“OSPI Control Variables” on page 124 for more information about the control variables.

OSPISNAP

The OSPISNAP DD can be used to gather additional debugging information for OSPI EX
and for the Scripting application. You must add the DD card to the BBI-SS PAS JCL and
restart the BBI-SS PAS before directing any debugging information to it. The DCB
characteristics for the OSPISNAP DD statement are:RECFM=VBA, LRECL=125,
BLKSIZE=1632. The blocksize can be modified to fit your DASD requirements.

OSPISNAP may be routed to a SYSOUT class or to a data set. Two kinds of output can
directed to the OSPISNAP: session information and debugging information requested b
BMC Software.
126 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

nd

lpful

AP
e also

n
ten

s are

n, an
re

g

Session information is requested using the IMFEXEC SESSINF command. This comma
causes the following information to be recorded in the OSPISNAP data set:

• OSPI ACB associated with the current session

• Application that OSPI is in session with

• Keyboard status

• Cursor position

• Contents of screen buffer

Since the screen is not visible to a human developing an OSPI EXEC, you may find it he
to use the IMFEXEC SESSINF command during the debugging phase.

If BMC Software support personnel request debugging information, you can obtain it by
specifying the DEBUG keyword on the IMFEXEC LOGON command or on the Scripting
panel. When you use the DEBUG keyword, the information is also written to the OSPISN
data set when the EXEC is invoked. When DEBUG is turned on, additional messages ar
written to the BBI-SS PAS Journal log.

Note: If you specifyY for the DEBUG option on the Scripting panel, debugging informatio
is written to the OSPISNAP data set only during script development and not writ
to the OSPISNAP data set during EXEC execution.

OSPI Session Termination Panel

When a session between OSPI and a VTAM application is terminated, the OSPI Session
Termination panel is displayed. This panel contains VTAM diagnostic information.

The following table contains error codes for some of the common reasons OSPI session
terminated.

When the diagnostic information indicates that the application has terminated the sessio
error may not have actually occurred. See “Application Termination” on page 123 for mo
information about application termination and the OSPI Session Termination panel.

See “OSPI Script Development Panel” on page 117 for more information about specifyin
ACB, application, and logmode names.

ACB
Error
Flag

RPL
Return and
Feedback
codes

Sense Cause of Error

5A N/A N/A OSPI terminal ACB cannot be opened

N/A 1012 087D0001 Application to log on to cannot be located

N/A 144B 00000000 OSPI terminal logmode cannot be located

N/A 0C0B 00000000 Application terminated the session

N/A 0006 00000000 Application terminated the session
Chapter 8. Interacting with VTAM-Applications with OSPI127

128 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

and is

tside
are
Chapter 9. Performing Automation Using AOAnywhere

This chapter describes the AOAnywhere API and the syntax required to use it.

AOAnywhere is an application programming interface (API) that allows MAINVIEW AutoOPERATOR users to
perform a variety of automation functions from outside the BBI-SS PAS address space. You can invoke
AOAnywhere functions from

• The TSO/E command line

• Inside a REXX EXEC or TSO/E CLIST EXEC

You can invoke these functions to operate locally on a BBI-SS PAS running on the same system that the comm
invoked from, or route functions to a remote system.

Overview

AOAnywhere allows AutoOPERATOR IMFEXEC automation functions to be invoked from address spaces ou
of AutoOPERATOR using a new command: AOEXEC. The equivalent of the following IMFEXEC commands
available as AOEXEC commands:

• AOEXEC ALERT

• AOEXEC MSG

• AOEXEC NOTIFY

• AOEXEC SELECT

• AOEXEC SYSINFO

• AOEXEC VDEL

• AOEXEC VGET

• AOEXEC VLST

• AOEXEC VPUT

• AOEXEC VDELL

• AOEXEC VGETL

• AOEXEC VLSTL

• AOEXEC VPUTL
Chapter 9. Performing Automation Using AOAnywhere129

 that

 by

u can
set and

voke
issued

ost of
ional

twork
IEW

ion.

c

 a
Sysplex Support

AOAnywhere functions can be invoked either locally (meaning on a BBI-SS PAS running on the same system
the command is invoked on) or remotely to a BBI-SS PAS.

To invoke a command on a remote system:

• A BBI-SS PAS must be active and available on the local system.

• XCF connectivity must exist between the local and the remote BBI-SS PAS.

Why Use AOAnywhere

AOAnywhere is a powerful function that allows access to many automation functions previously available only
using AutoOPERATOR IMFEXEC commands (in REXX EXECs or CLIST EXECs)within the AutoOPERATOR
subsystem. AOAnywhere allows such access through an interface that operates outside of the subsystem. Yo
perform tasks that are part of production control or perform tasks that are part of a helpdesk system such as
read variables or create or delete AutoOPERATOR ALERTS from REXX EXECs without going through the
subsystem.

In previous releases of AutoOPERATOR (prior to version 6.1.00), you could use the IMFSUBEX interface to in
EXECs but this method was slow and did not allow for two-way exchange of information. Only a return code
by the invoked EXEC could be returned.

AOAnywhere functions are very fast; they allow sharing variable pools with invoked EXECs and access to a h
other functions. In most instances AOAnywhere offers a faster IMFSUBEX replacement while providing addit
functionality.

Manual process intervention is also simpler. For example, when a helpdesk operator becomes aware of a ne
problem before automation does, the operator can generate an AutoOPERATOR ALERT and (with the MAINV
AutoOPERATOR Elan Workstation component installed) page additional personnel through an ISPF applicat
Logging on to the subsystem is not required and the operation itself can be executed in a few minutes.

Specific messages can be sent to the BBI Journal from any TSO/E REXX or CLIST application where specifi
information about an automation situation or multi-system support can be provided via XCF connectivity.

AOAnywhere opens up automation possibilities through a simple command processor that can be invoked in
variety of environments.

Installation Requirements

To use the AOEXEC command processor under TSO/E, it must be available to the TSO/E user under the
STEPLIB/LINKLIB concatenation. Otherwise the command processor will not be found.

Currently, you can secure access to AOAnywhere with the same security measures available for writing
AutoOPERATOR EXECs. These security measures are described in the BMC Software documentImplementing
Security for MAINVIEW Products.
130 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 the API

mes

he

es are

nd is

XT()
API Implementation under REXX and CLIST

The API functions are available as a separate command processor. This feature allows simultaneous use for
by TSO/REXX and TSO/CLIST.

Differences between IMFEXEC and AOEXEC Parameter Syntax

Parameters and return codes between IMFEXEC and AOEXEC commands are identical with the following
exceptions:

• All AOEXEC variable operations (VPUT, VGET, VDEL and their long counterparts) specify the variable na
using the VAR() keyword instead of a positional parameter.

• The AOEXEC VPUT command has no FROM(), USING() or ENCRYPT() parameters.

• The AOEXEC VGET command has no INTO(), DECRYPT or DELIM() parameters.

• All AOEXEC commands might return a return code of –1 with the TGTSS() keyword. In this case, either t
request timed out or the target system was shut down in the middle of a request.

• All AOEXEC commands accommodate two extra keywords, SS | SSID() and TGTSS() where

Additional Differences

All AOEXEC commands return values in return codes that are listed with each AOEXEC command. The valu
returned differently depending on where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the RC variable. If the AOEXEC comma
used in a CLIST EXEC, the return code is returned in &LASTCC.

Furthermore, the AOEXEC command processor attempts to streamline the syntax of some of the supported
commands. For example:

• For the AOEXEC ALERT command, the first two positional parameters are replaced by the keywords TE
and KEY() respectively.

SS | SSID(subsystem identifier) Required keyword.

SS | SSID() specifies the subsystem identifier of a local
subsystem. If the TGTSS() keyword is not specified,
this SSID is the subsystem where the requested
function is executed.

TGTSS(target system identifier) Optional keyword.

If the TGTSS() keyword is specified, the subsystem
specified by the SS | SSID() keyword is considered a
router and the actual function is executed on the
subsystem specified by TGTSS().

It must be in the same sysplex as the BBI-SS specified
with the SSID() keyword, and both systems must have
the same XCFGROUP specified in the BBPARM
BBISSPxx.
Chapter 9. Performing Automation Using AOAnywhere131

nd.

mber

e into the

in and

an EXEC

GTA.
placed
 the

placed

 this
• The TARGET() keyword has been removed from all AOEXEC commands and replaced by the TGTSS()
keyword.

• The VAR() keyword can be overwritten in the invoked EXEC by specifying the IMFEXEC SHARE comma

• The AOEXEC SELECT command has a new keyword, VAR(). This keyword specifies the names of any nu
of variables that will be exchanged with the LOCAL variable pool of the selected EXEC.

Before the target EXEC begins, the contents of these variables are placed as variables of the same nam
LOCAL pool.

When the EXEC ends, the contents of these variables in the target EXEC’s LOCAL pool are extracted aga
placed as TSO variables in the pool of the invoking EXEC.

Each of these exceptions has been reflected in the documentation for each of the AOEXEC commands.

Example

Here is an example about how to share variables between an EXEC running in a TSO/E address space and
running in the subsystem:

a='ONE'
"AOEXEC SELECT EXEC(DEMO) VAR(A B) WAIT(YES) SSID(TGTA)"
say b

These lines within a REXX EXEC causes the EXEC named DEMO to be invoked on the subsystem named T
Before the EXEC begins processing the contents of the variables of the invoking EXEC, variables A and B are
in the EXEC’s LOCAL variable pool. Variable B’s value has not been set but specified for data exchange with
PAS EXEC.

The code for the EXEC in the subsystem is

"IMFEXEC VGET A LOCAL"
"IMFEXEC MSG A"
b='TWO'
"IMFEXEC VPUT B LOCAL"

This code causes the message ONE to be written to the subsystem journal. Subsequently the value of TWO is
into the variable B and this variable placed into the EXEC’s LOCAL variable pool. This variable pool will be
transmitted back to the invoking REXX EXEC. Note that the specified contents of the LOCAL variable pool, in
case the variables A and B, are shared with the invoking EXEC.

The statement

say b

causes the value of B, in this case now TWO, to be written to the TSO/E console.
132 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

uires

cross
s it

fer to
 the

ignal
 step.
etion

either
of the

ords

 the

l

Implementing the AOAnywhere Batch Interface: AOSUBX

For batch jobs, AOAnywhere contains a facility called AOSUBX. This facility is a partial replacement for the
existing IMFSUBEX function. Both functions allow you to invoke an EXEC from a batch step with the PARM=
specification.

Both facilities allow for requests to be scheduled across systems. However, AOSUBX (unlike IMFSUBEX), req
sysplex connectivity between the systems.

In addition, AOSUBX offers significantly shorter execution time and the ability to wait for EXECs scheduled a
systems without tying up the VTAM link between multiple BBI-SS PASs. When sysplex connectivity exists, (a
should when using AOSUBX), you should always choose AOSUBX for EXEC invocation.

In a TSO/E environment, a suite of command processor functions is available under the AOEXEC facility. Re
“AOEXEC Commands” on page 135 for details. This approach is preferred under TSO/E as opposed to using
AOSUBX facility.

Why Use AOSUBX

Under certain conditions it is convenient to initiate an EXEC from a jobstep or procstep. This invocation can s
the completion of a particular function or the necessity to execute AutoOPERATOR functions on behalf of the
At times these functions need to be executed before the job or process can continue and some sort of compl
indication needs to be passed back and forth between the invoked EXEC and the step.

AOSUBX (like IMFSUBEX) meets these requirements. It represents a high speed path to EXEC invocation on
local or remote systems and allows the caller to wait for the completion of this EXEC, returning the exit code
invoked EXEC as a modified return code.

Syntax

The general syntax for invoking AOSUBX from a jobstep is as follows:

//STEPX EXEC PGM=AOSUBX,PARM=’parms…’
//STEPLIB DD DISP=SHR,DSN=prefix..BBLINK

Theparms entered must specify the EXEC() and SS | SSID() keywords whereas the TGTSS() and WAIT() keyw
are optional. The description of the keywords follows.

Keyword Required/
Optional

Description

EXEC Required Specifies the name of the EXEC and any parameters to be passed to
symbolic variables defined as input in the EXEC.

Maximum length is any number of characters allowed by the PARM=
statement.

Note that the SS | SSID() parameter is required.

SS | SSID() Required Specifies a BBI-SS PAS to process this EXEC or the name of a loca
BBI-SS PAS that will route the request to a remote BBI-SS PAS (as
specified by the TARGET|TGTSS() keyword).
Chapter 9. Performing Automation Using AOAnywhere133

to

For
+12).

be

e

rget

ord
t

8 is
Return codes are listed in the following table.

Examples
EXEC(TEST A B C D()) SSID(RE61) TGTSS(RE62) WAIT(Y)

An EXEC with the name ofTEST will be invoked, passing the parametersA B C D(). Note that parentheses are
allowed. A BBI-SS PAS with the SSID ofRE61 must be active on the same MVS image that will route the request
another BBI-SS PAS with an SSID ofRE62.

The step will wait until the EXEC ends and a return code of 2048 plus the exit code of the EXEC is returned.
example, if the EXEC ended with an IMFEXEC EXIT CODE(12), the step receives a return code of 2060 (2048

TARGET|TGTSS() Optional Specifies the name of a remote BBI-SS PAS where the request is to
routed. Sysplex connectivity between the local and remote BBI-SS PAS
must be available.

The target BBI-SS PAS must be in the same sysplex as the BBI-SS
specified with the SSID() keyword, and both systems must have the sam
XCFGROUP specified in the BBPARM BBISSPxx.

WAIT() Optional Specifies whether to wait for the completion of the EXEC or continue
after scheduling. Note that WAIT(Y) is required to obtain the exit code of
the EXEC.

Value Description

-1 When the TGTSS() keyword is used, indicates that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC you are trying to invoke does not exist.

16 Syntax error occurred.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The local BBI-SS PAS specified by the SSID parameter is not available.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

2048 + return code When specifying WAIT(Y) and the command was executed successfully, a value 204
added to the EXEC’s exit code before the return code is generated.

Keyword Required/
Optional

Description
134 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

on.

at can

the

of
AOEXEC Commands

The following table lists the IMFEXEC AOEXEC commands and the page where you can find more informati

Command Page Function

AOEXEC ALERT 137 Creates and manages exception messages and message queues th
be displayed by any of the STATUS applications and ALERT
Management Facility applications.

AOEXEC MSG 161 Logs a message in the BBI-SS PAS Journal log.

AOEXEC NOTIFY 163 Sends a request through AutoOPERATOR to issue a pager call using
MAINVIEW AutoOPERATOR Elan Workstation component (if it is
installed).

AOEXEC SELECT 165 Invokes an EXEC or a program.

AOEXEC SYSINFO 167 Searches the current MVS image for an AutoOPERATOR subsystem
that runs AOAnywhere support.

AOEXEC VDEL 171 Deletes one or more variables from one of the AutoOPERATOR
variable pools.

AOEXEC VGET 174 Copies one or more variables from one of the AutoOPERATOR pools
into the EXECs function pool.

AOEXEC VLST 176 Lists variable names defined in the AutoOPERATOR pools.

AOEXEC VPUT 179 Copies one or more variables from the EXECs function pool into one
the AutoOPERATOR pools.

AOEXEC VDELL 181 Deletes one or more long variables from one of the AutoOPERATOR
variable pools.

AOEXEC VGETL 183 Copies one or more long variables from one of the AutoOPERATOR
pools into the TSO pool.

AOEXEC VLSTL 185 Retrieves a long variable from the specified pool and places it into the
TSO pool.

AOEXEC VPUTL 187 Creates or sets a long variable from a variable in the TSO pool.
Chapter 9. Performing Automation Using AOAnywhere135

r

ust be

es are

nd is

. The

as

n alias
General Coding Conventions

The following sections briefly describe the coding conventions for using the AOEXEC command statements.

The command syntax is the keyword AOEXEC, followed by the command and any necessary parameters; fo
example:

AOEXEC command [parameters]

Using Variable Names

Variable names are limited to 32 characters in length except where noted. The first character of the variable m
alphanumeric or one of the following special characters:

• $

• @

• #

Reading Return Codes

All AOEXEC commands return values in return codes that are listed with each AOEXEC command. The valu
returned differently depending on where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the RC variable. If the AOEXEC comma
used in a CLIST EXEC, the return code is returned in &LASTCC.

Understanding Command Statement Syntax

Each AOEXEC command statement description includes a table describing the parameters for the command
table uses the following format:

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly
shown.

If parts of the identifier are shown inbold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains a
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

Parameter Function Notes

1 2 3
136 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

TUS
AOEXEC ALERT
Subject: AOEXEC ALERT
This command manages exception messages and message queues that can be displayed by any of the STA
applications and ALERT Management Facility applications.

Command Parameters

AOEXEC ALERT [KEY()]
[TEXT('text string')]
[ALARM(YES|NO)]
[COLOR(RED|PINK|YELLOW|DKBLUE|LTBLUE|GREEN|WHITE)]
[DISPOSE(KEEP|DELETE)]
[ESCALATE(UP|DOWN)]
[ESCEXEC('execname p1 p2 p3 ... pn')]
[EXEC('execname p1 p2 p3 ... pn')]
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQ|LISTQ|READQ)]
[HELP(panelname)]
[INTERVAL(nnnn,nnnn,nnnn,nnnn,nnnn,nnnn)]
[PCMD('cmd string')]
[POSITION(position)]
[PRI(CRITICAL|MAJOR|MINOR|WARNING|INFORMATIONAL|CLEARING)]
[PUBLISH(REPLACE|ADD|NO]
[QUEUE(MAIN|queue name)]
[RETAIN(YES|NO)]
SS | SSID(subsystem identifier)
[SYSTEM(YES|NO)]
[TGTSS(target subsystem identifier)]
[ORIGIN(origin)]
[UDATA('user data')]
[USER(user name)]
Chapter 9. Performing Automation Using AOAnywhere137

AOEXEC ALERT
The following table describes the parameters.

Parameter Function Notes

KEY The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for

FUNCTION(ADD)
FUNCTION(DELETE)

Optional for

FUNCTION(READQ)

You must specify a unique key for every
ALERT you create. If you create a second
ALERT with the same key as an already
existing ALERT in the queue, the second
ALERT will overwrite the first ALERT.

TEXT The text of the ALERT message Maximum message length is 255
alphanumeric positions. Required for:

FUNCTION(ADD)

If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced by N/A. A
specification of /N within the alert text
forces a line break. You must include a
blank space before and after using /N.

This parameter applies also to the READQ
and COUNT functions. Only ALERTs
matching this text string are considered
during these operations.

ALARM An audible alarm emitted from the terminal
on the ALERT Detail application

Possible values are

YES Sound alarm.
NO Do not sound alarm.

NO is the default.
138 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
COLOR|COL The color in which the ALERT is displayed
in the ALERT DETAIL and STATUS
applications (overrides default color
associated with ALERT priority)

This parameter does not have any impact
upon the ALERT OVERVIEW application.

When an ALERT’s priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s color
will change to the color in the following list:

RED - CRITICAL

PINK - MAJOR

YELLOW - MINOR

DKBLUE - WARNING

LYBLUE - INFORMATIONAL

GREEN - CLEARING

DISPOSE Allows you to specify whether an ALERT is
kept or deleted when it has reached its final
escalation priority level

This keyword must be used with the
INTERVAL keyword.

Possible values are

KEEP Keep the ALERT in its
queue.

DELETE Delete the ALERT from
the queue.

KEEP is the default.

The variable AMFEDISP returns the value
of this keyword.

ESCALATE Allows you to create ALERTs that can
change in priority over a specified interval
of time

This keyword must be used with the
INTERVAL keyword.

Possible values are

UP The ALERT priority is
upgraded from less critical
to more critical.

DOWN The ALERT priority is
downgraded from more
critical to less critical.

UP is the default.

The variable AMFEDIR returns the value of
this keyword.

Parameter Function Notes
Chapter 9. Performing Automation Using AOAnywhere139

AOEXEC ALERT
ESCEXEC Allows you to specify an EXEC (with
parameters) that is scheduled when the
ALERT reaches its final priority level

This keyword must be used with the
INTERVAL keyword.

The variable AMFEEXEC returns the value
of this keyword.

EXEC The name of the ALERT-initiated follow-up
EXEC and its parameters

Maximum length is 256 characters.

Refer to “Parameters Passed to the EXEC”
on page 29 for more information about
parameters passed to ALERT-initiated
EXECs.

FUNCTION|FUN The function to be performed Use the FUNCTION keyword with

• ADD
• COUNT
• CREATEQ
• DELETE
• DELETEQ
• LISTQ
• READQ

For more information about these functions
and the return codes they generate, refer to
Table 8 on page 146.

HELP The name of an extended help panel Maximum length is 8 characters.

This help panel is displayed when you enter
the EXPAND primary command in the
ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.

The help text member must be included the
BBPLIB concatenation for the terminal
session.

Parameter Function Notes
140 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

t

INTERVAL Allows you to specify one to six intervals of
time over which the priority of an ALERT
will change

An ALERT’s priority can either increase
(become more critical) or decrease (become
less critical) in priority over the specified
time intervals.

The interval can be specified from 0 to 9999
minutes. At least one interval must be
specified for an ALERT when ESCALATE
is specified.

When the final interval expires

• The action specified by the DISPOSE
keyword occurs (either the ALERT is
deleted or kept)

• If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled

This keywordmust be used with the
ESCALATE keyword and you must specify
at least one interval for an ALERT when
ESCALATE is specified. The variables
AMFEINT1 through AMFEINT6 return the
values associated with this keyword.

In addition, when you want to have an
ALERT change in priority, you must always
code one interval more than the number of
changes. No priority changes occur in the
last interval.

For example, if you want an ALERT to
change from MAJOR to CRITICAL, you
must code two interval periods.

Refer to “Examples of ALERT Escalation”
on page 156 for examples.

ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin tha
is assigned to the ALERT.

The first character cannot be a numeric.
This user-defined origin overrides the
EXEC’s IMFSYSID (or the originating job
name for the EXEC).

Parameter Function Notes
Chapter 9. Performing Automation Using AOAnywhere141

AOEXEC ALERT
PCMD A command to be executed if the terminal
operator uses the TRANSFER command on
the ALERT DETAIL panel

Any command that is valid from the
COMMAND line is a valid value for this
parameter.

Maximum length is 256 characters.

PCMD is executed as if it were entered on
the COMMAND line. You should use the
SYSTEM parameter (described below) or
include the BBI SYSTEM command for
ALERTs that contain PCMD to ensure that
the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.

For example:

PCMD('CICS;EX TRAN;SYSTEM SYSA')

Note that if you have blanks in the PCMD
statement, you must use single quotation
marks.

POSITION|POS The order of the ALERT in the queue to
read

Valid values are in the range from 1 to
32,767.

This parameter is used only with the
READQ function.

PRIORITY The priority of the ALERT A valid value is one of the following
options:

CRITICAL
MAJOR
MINOR
WARNING
INFORMATIONAL
CLEARING

Parameter Function Notes
142 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
PUBLISH Specifies whether an ALERT is published
and how it is published to connected
PATROL Enterprise Manager (PATROL
EM) workstations that have subscribed to
receive ALERTs through the General
Message Exchange (GME).

Possible values are

REPLACE An ALERT REPLACE
command for the ALERT’s
key/queue is sent to all
PATROL EM workstations
that have subscribed to
receive ALERTs from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL EM
workstation, it is deleted
before writing the new
ALERT with that key/queue.

ADD An ALERT ADD command
is sent to all workstations that
have subscribed to receive
ALERTs from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL EM
workstation, it is not deleted
before writing the new
ALERT with that key/queue.

ADD is the default.

NO The ALERT is not written to
the connected PATROL EM
workstations even if they
have subscribed to receive
ALERTs.

QUEUE|QUE The name of the queue to access or into
which to place the ALERT

Length can be 1 - 8 characters; embedded
blanks are valid.

Parameter Function Notes
Chapter 9. Performing Automation Using AOAnywhere143

AOEXEC ALERT
RETAIN Allows you to specify that an ALERT will
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS
IPLs.

Note that using this parameter causes the
ALERT to be written to DASD. Therefore,
you should use this parameter only after
careful consideration. A BBI-SS PAS
(warm or cold) start or MVS IPL might
eliminate the exceptional situation that
caused the ALERT in the first place.

Possible values are

YES Retain this ALERT in disk space so
that it can survive a BBI-SS PAS
warm or cold start.

NO Do not retain this ALERT to survive
BBI-SS PAS warm or cold starts.

NO is the default.

ALERTs that specify RETAIN(YES)
cannot also specify the INTERVAL
keyword.

In other words, ALERTs that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).

The variable AMFRTAIN returns the value
of this keyword.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem. If TGTSS()
is not specified, this is the subsystem where
the requested function is executed.

Required keyword.

SYSTEM Determines whether the ALERT DETAIL
processor switches the current target to the
origin of the ALERT when processing a
TRANSFER (PCMD).

The default is YES, switch the current target
to the origin of the ALERT when processing
a TRANSFER (PCMD).

NO specifies do not switch current target to
the origin of the ALERT when processing a
TRANSFER (PCMD).

The target is changed to reflect what was
coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the subsystem
specified by TGTSS(). If TGTSS() is not
specified, the requested function is executed
on the subsystem specified by the SS | SSID
keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword, and
both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

Parameter Function Notes
144 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
UDATA Any desired user data string Maximum length is 256 bytes

The contents of the UDATA field can be
retrieved using the READQ function.

USER The name of the user ID to which the
ALERT is addressed

A 1 - 8 character valid BBI-TS user ID.

Contents of the user field can be used to
tailor ALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Refer to
the “ALERT Management Facility” chapter
in theMAINVIEW AutoOPERATOR Basic
Automation Guide for more information.

Parameter Function Notes
Chapter 9. Performing Automation Using AOAnywhere145

AOEXEC ALERT

n be
Return Codes for FUNCTION Keywords

The following table lists and describes in alphabetical order the return codes for the different functions that ca
used with the FUNCTION keyword in an AOEXEC ALERT EXEC statement.

Table 8. FUNCTION Names and Return Codes

FUNCTION Description Return
Code
Value

Return Code Description

ADD Adds an ALERT to a queue and
creates a new queue if one does
not already exist

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 ADD was successful.

16 Invalid syntax used.

20 ALERT queue is full.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.
146 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
COUNT Counts the numbers of ALERTs in
a given queue.

Refer to “TSO Variables Returned
from COUNT” on page 154 for
more information.

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 COUNT was successful; count value is
returned in variable AMFCOUNT.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
Chapter 9. Performing Automation Using AOAnywhere147

AOEXEC ALERT
CREATEQ Creates a new ALERT queue. -1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 Queue was created successfully.

4 Queue already exists.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
148 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
DELETE Deletes an ALERT by the ALERT
key.

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 DELETE was successful.

4 ALERT does not exist.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
Chapter 9. Performing Automation Using AOAnywhere149

AOEXEC ALERT
DELETEQ Deletes an ALERT queue. -1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 DELETEQ was successful.

4 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
150 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
LISTQ Lists (in TSO variable IMFNOL)
the number of ALERT queues
present in the target subsystem.

Refer to “TSO Variables Returned
from LISTQ” on page 154 for
more information.

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 LISTQ was successful; ALERT queue data is
returned.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
Chapter 9. Performing Automation Using AOAnywhere151

AOEXEC ALERT
TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ parameter.

READQ Reads an ALERT from the queue
and returns the characteristics of
the ALERT in TSO variables.

Refer to “TSO Variables Returned
from the READQ Parameter” for
more information.

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the middle
of a request.

0 READQ was successful; ALERT data
returned.

4 Either no match was found when using KEY
and TEXT criteria or the search ran past the
end of the queue when using the POSITION
keyword.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function
under NetView without a valid
Access/NetView product key.

Name Contents Maximum
Length/Format

Example

AMFALARM Alarm value of the alert 1 / Y (YES) or N
(NO)

Y

AMFCOLOR Color of ALERT 6 / As specified
by COLOR
parameter

RED

Table 8. FUNCTION Names and Return Codes (Continued)

FUNCTION Description Return
Code
Value

Return Code Description
152 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT
AMFEDIR Increase or decrease the priority of
the ALERT when it is escalated

1 / Character U
(up) or D (down)

D

AMFEDISP Keep or delete the ALERT at the
final escalation level

1 / Character (K
or D)

K

AMFEEXEC Name of EXEC and EXEC
parameters scheduled at final
escalation priority

0-256 / Character ALRTEXEC

AMFEINT1
AMFEINT2
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6

Number (in minutes) from 0 to
9999

4 / Numeric (or
null)

15

AMFEXEC EXEC and EXEC parameters
associated with the ALERT

0-256 / Character DBSTART SHIFT2

AMFHELP Extended Alert member name 8 / Character HELPXT2

AMFIDATE Date ALERT was issued 9 / DD-MMM-
YY

14-FEB-92

AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24

AMFKEY Key of the ALERT 1-64 / Character DASD01

AMFORGN Origin of ALERT 1-8 / Character CICSPROD

AMFPCMD Primary command specified in
ALERT

0-256 / Character CICS; EX TRAN

AMFPRIOR Priority of ALERT 13 / As specified
in PRIORITY
parameter

INFORMATIONAL

AMFPSYS Value for SYSTEM keyword
(could be either YES or NO)

1 / Character (Y
or null)

Y

AMFPUB Value of the PUBLISH keyword
when an ALERT is created

2-7/ADD,
REPLACE, or
NO

ADD

AMFQUEUE Name of queue for ALERT 8 / Character MAIN

AMFRTAIN Specifies whether to retain an
ALERT across BBI-SS PAS warm
and cold starts

1 / Character (Y
or N)

Y

AMFSSID System from which ALERT was
issued

8 / Character SYSB

AMFTEXT Text of the ALERT 0-255 / Character This ALERT is a test

Name Contents Maximum
Length/Format

Example
Chapter 9. Performing Automation Using AOAnywhere153

AOEXEC ALERT

 it
TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT parameter.

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ parameter.

AMFTGT Target to which ALERT was
issued

1-8 / Character IMS22P

AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter

AMFUSER Name of the user ID to which the
ALERT is addressed

8 / Character JDB1

Name Contents

AMFCOUNT Number of ALERTs in designated queue

Name Contents

IMFNOL Number of queues present in the target subsystem. In variables LINE1 through LINExxx,
returns the names of the all the queues. Limit is 500 queue names.

Name Contents Maximum
Length/Format

Example
154 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

ple.

f

d with

 to
EC
d
nel in

he

XPAND.
nd
Examples

This section describes examples using the AOEXEC ALERT command. A brief discussion follows each exam

Example 1: Creating a Multiline ALERT.

ALERTs are created as single-line messages unless you use the characters/N in the alert text parameter. The
characters/N indicate the beginning of a new line of alert text.

You must use a blank space before and after/N. In the example above, the alert text parameters includes the use o/N
in two places. The EXEC command in this example produces the following multiline ALERT:

Example 2: Associating a Help Panel with an ALERT.

Use the HELP keyword of the AOEXEC ALERT command statement to indicate there is a help panel associate
an ALERT.

Prior to using the HELP keyword in the AOEXEC ALERT command, you must create and add the help panel
BBPLIB. The HELP keyword specifies the name of the BBPLIB member name. The example shows an AOEX
ALERT command statement that specifies a help panel named H8100. The example is a REXX statement an
therefore uses double quotation marks. The ALERT created by the EXEC appears on the ALERT DETAIL pa
the following format:

The ALERT is displayed with anh in theIND column. Thish indicates that there is a help panel associated with t
ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and press the PF key assigned to E
You can also type EXPAND on the COMMAND line and then place the cursor anywhere on the ALERT text a
press ENTER.

"AOEXEC ALERT KEY(NETW2) ",
 "TEXT(’COMMUNICATION LINES DOWN: /N - DALLAS /N - CHICAGO’) ",
 "FUNCTION(ADD) QUEUE(NETWORK) ",
 "PRIORITY(CRITICAL) COLOR(PINK) SSID(RE61)"

___ 11:43 CHICAGO COMMUNICATION LINES DOWN:
 - DALLAS
 - CHICAGO

"AOEXEC ALERT KEY(NETW1) ",
 "TEXT(’ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21’) ",
 "FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100) ",
 "COLOR(RED) SSID(RE61)"

TIME IND ORIGIN _______________________________________
11:44 h CHICAGO ALM0100 8100 COMMUNICATION LINE DOWN:
 -CHI998A21
Chapter 9. Performing Automation Using AOAnywhere155

AOEXEC ALERT

y.

ts the

f the
in the

as the

f the

, and

l.
 the
Example 3: Managing ALERT Queues.

You can periodically check the queues for ALERTs that have not been responded to and escalate their priorit

In the above EXEC, the READQ function is used to set AMFCOUNT equal to the number of ALERTs in the
NETWORK queue. The EXEC then reads each ALERT from the NETWORK queue using POSITION and tes
user data presented in the AMFUDATA variable.

If the criteria is met, the ALERT is deleted from the NETWORK queue using the AMFKEY variable (the key o
ALERT). Then the ALERT is added to the supervisor's queue using the same key and using the original text
AMFTEXT variable.

Note: This example assumes that the ALERTs were originally created with some meaningful user data (such
date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTs with the ESCALATE parameter so that an ALERT can
increase or decrease in priority over specified intervals of time.

Example 1: Escalating an ALERT from lowest to highest priority: The ALERT in this example will be
upgraded from Informational to Critical priority over five intervals. The following list describes the properties o
ALERT:

• The original priority of the ALERT is Informational (PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded gradually over the intervals of 10 minutes, 20 minutes, 30 minutes, 30 minutes
40 minutes (Interval(10,20,30,30,40)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (Dispose(delete)).

When the EXEC that is associated with this ALERT is scheduled, the ALERT’s original priority is Informationa
After 10 minutes (1), the priority is upgraded automatically from Informational to Warning. The ALERT stays at

/* REXX */
"AOEXEC VGET VAR(THRSHOLD) SSID(RE61)"
"AOEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK) SSID(RE61)"
n=amfcount
do while n > 0
 "AOEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION("N") SSID(RE61)"
 if rc=0 then do
 if amfudata > thrshold then do
 "AOEXEC ALERT KEY("amfkey") FUNCTION(DELETE) QUEUE(NETWORK) SSID(RE61)"
 "AOEXEC ALERT KEY("amfkey") FUNCTION(ADD) TEXT('"amftext"') QUEUE(SUPERVSE)”,
 “SSID(RE61)"
 END
 END
 n = n - 1
END

"AOEXEC ALERT KET(KEY1) TEXT('test alert') PRIORITY(INFO) ESCALATE(UP)" ,
 "INTERVAL(10,20,30,30,40) DISPOSE(DELETE) SSID(RE61)"

1 2 3 4 5
156 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

10
ng

d. The
Warning priority for 20 minutes (2) and is upgraded to Minor. The ALERT stays at Minor priority for 30 minutes (3)
before being upgraded to Major. It stays at Major priority for 30 minutes (4) before being upgraded to Critical. After
remaining at Critical for 40 minutes (5), the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals: The ALERT in this example will be
downgraded over two intervals. The following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be downgraded (ESCALATE(DOWN)).

• The priority will be downgraded over the intervals of 10 minutes and 20 minutes (INTERVAL(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (DISPOSE(DELETE)).

When the EXEC that is associated with this ALERT is scheduled, the ALERT’s original priority is Minor. After
minutes (1), the priority is downgraded automatically from Minor to Warning. The ALERT remains at the Warni
priority for 20 minutes (2) and is deleted at the end of the interval.

The intervals in this example also can be validly coded as follows:

INTERVAL(10,20,)

or

Interval(10,20,,)

or

Interval(10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC: The ALERT in this example will
be upgraded over two time intervals and, at the end of the second interval, an escalation EXEC will be schedule
following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over the intervals of 10 minutes and 20 minutes (INTERVAL(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(DISPOSE(KEEP)).

• When the ALERT completes its final interval, an EXEC named E100 with three parameters is scheduled
(ESCEXEC('E100 p1 p2 p3')).

"AOEXEC ALERT KEY(KEY2) TEXT('test alert') PRIORITY(MINOR) ESCALATE(DOWN) " ,
 "INTERVAL(10,20) DISPOSE(DELETE) SSID(RE61)"

1 2

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(UP) ",
"INTERVAL(10, 20) DISPOSE(KEEP) ESCEXEC(’E100 p1 p2 p3’)"

1 2
Chapter 9. Performing Automation Using AOAnywhere157

AOEXEC ALERT

tes

mains

ou

r a

 is

10
te

RT:
When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Minor. After 10 minu
(1), the priority is upgraded automatically from Minor to Major. The ALERT remains at the Major priority for 20
minutes (2) and the EXEC e100 with its three parameters is scheduled at the end of the interval. The ALERT re
at the Major priority until it is manually deleted.

Example 4: Skipping ALERT priorities during ALERT escalation: The ALERT in this example will be
upgraded from Informational to Major while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT:

The original priority of the ALERT is Informational(PRIORITY(INFO)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over the two intervals of 10 and 20 minutes.

However, to skip ALERT priorities, you must specify an interval of zero minutes for each of the intervals y
want to skip.

In this example, the ALERT will skip two priorities and change from Informational priority directly to Major afte
10-minute interval (INTERVAL(10,0,0,20)).

• When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(DISPOSE(KEEP)).

• When the ALERT completes its final interval of 20 minutes, an EXEC named E100 with three parameters
scheduled (ESCEXEC('E100 p1 p2 p3')).

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Informational. After
minutes (1), the ALERT’s priority is upgraded automatically from Informational to Major. To skip the intermedia
priorities, you must code zero minutes for both Warning and Minor priorities (2 and3).

The ALERT remains at the Major priority for 20 minutes (4) and the EXEC e100 with its three parameters is
scheduled at the end of the interval. The ALERT remains at the Major priority until it is manually deleted.

The intervals in this example also can be validly coded as follows:

INTERVAL(10,0,0,20,)

or

INTERVAL(10,0,0,20,,)

Example 5: Showing the elapsed time for an escalated ALERT. The ALERT in this example will be
upgraded from Minor to Major in one 10-minute interval. The following list describes the properties of the ALE

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over one interval of 10 minutes (INTERVAL(10)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (DISPOSE(DELETE)).

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP) ",
"INTERVAL(10,0,0,20) DISPOSE(KEEP) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)"
 1 2 3 4
158 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

iority.

ls are
• When the ALERT completes its final interval, an EXEC named E100 with three parameters is scheduled
(ESCEXEC('E100 p1 p2 p3')).

The following example shows the life of the ALERT over time:

Examples of Invalid Coding with the Interval Parameter

Some examples of invalid coding are as follows:

Example 1: The interval keyword must contain at least one value.

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP) ",
 "INTERVAL(, 10, 10) SSID(RE61)"

Example 2: You can only specify as many intervals as there are between an originating priority and the end pr

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP)",
 "INTERVAL(, 10,,20) SSID(RE61)"

In example 2, there is only one priority that a major ALERT can be upgraded to (Critical) and yet three interva
specified.

Example 3: The interval keyword cannot have null values for intervals.

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP)”
 “INTERVAL(,10,10) SSID(RE61)"

or

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP)”
 “INTERVAL(,10,,20) SSID(RE61)"

Example 4: The intervals cannot have negative values.

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert') PRIORITY(INFO) ESCALATE(UP)" ,
"INTERVAL(, 10,-20) SSID(RE61)"

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(UP) ",
 "INTERVAL(10, 20) DISPOSE(DELETE) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)"

1:00pm 1:10pm 1:30pm
A Minor ALERT --> The ALERT is upgraded --> The ALERT is deleted
is created to Major Priority and the EXEC e100
 is scheduled
The ALERT stays at this The ALERT stays at this
priority for 10 minutes priority for 20 minutes
Chapter 9. Performing Automation Using AOAnywhere159

AOEXEC ALERT

eting
Examples of the PUBLISH Parameter

The following examples demonstrate the usage of the AOEXEC ALERT PUBLISH parameter.

Example 1: This example creates an ALERT and publishes it to all connected PATROL EM workstations, del
any ALERTs already present with the same queue name and key.

"AOEXEC ALERT KEY(TESTKEY) TEXT(‘THIS IS A TEST’) FUNCTION(ADD) PUBLISH(REPLACE)" ,
 "QUEUE(TEST AREA) SSID(RE61)"

Example 2: This example creates an ALERT but does not publish it to any connected MAINVIEW
AutoOPERATOR Elan Workstation.

"AOEXEC ALERT KEY(TESTKEY) TEXT(‘DO NOT PUBLISH ME’) FUNCTION(ADD) PUBLISH(NO)" ,
 "QUEUE(MAIN) SSID(RE61)"
160 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC MSG

rget

ord
t

AOEXEC MSG
Subject: AOEXEC MSG
This command logs a message in the BBI-SS PAS Journal log.

The following table describes the parameters.

Note: Specifying a null variable for Message text causes an error.

Return codes are listed in the following table.

Command Parameters

AOEXEC MSG ‘Message text’
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

Message text Text of the message to issue. Maximum length is 252 bytes.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

8 Supplied message text exceeds limit of 252 characters.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as the originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.
Chapter 9. Performing Automation Using AOAnywhere161

AOEXEC MSG

d on the
Example

This example sends a message to the BBI-SS PAS monitoring the target named CICA. The message is logge
remote Journal and no entry is made on the originating system's Journal.

“AOEXEC MSG 'MANUFACTURING DATABASE IS OFFLINE' SSID(RE61) TGTSS(CICA)”
162 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC NOTIFY

rget
AOEXEC NOTIFY
Subject: AOEXEC NOTIFY
This command sends a request through AutoOPERATOR to issue a pager call using the MAINVIEW
AutoOPERATOR Elan workstation component (if it is installed).

The following table describes the parameters.

Return codes are listed in the following table

Command Parameters

AOEXEC NOTIFY NAME(Elan contact name)
[INFO(‘Text’)]
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

NAME The contact name defined to MAINVIEW
AutoOPERATOR Elan workstation.

1-32 characters alphanumeric.
MAINVIEW AutoOPERATOR Elan
workstation equates this name to a
telephone number to be dialed.

INFO Any information to be passed and placed
on the pager.

1-12 alphanumeric characters.

Text must be included in quotation marks
if it contains blanks.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 MAINVIEW AutoOPERATOR Elan workstation successfully passed the information.

8 The request timed out.

12 MAINVIEW AutoOPERATOR Elan workstation could not execute the request.

16 MAINVIEW AutoOPERATOR Elan workstation communications were not established.
Chapter 9. Performing Automation Using AOAnywhere163

AOEXEC NOTIFY

ing

ord
t

Example

This command notifies the individual SYSPROG through MAINVIEW AutoOPERATOR Elan Workstation, pass
the information SYSTEM to the pager.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM) SSID(RE61)"

Value Description
164 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SELECT

 other
AOEXEC SELECT
Subject: AOEXEC SELECT
This command invokes an EXEC or a program. This section also describes how to invoke programs written in
programming languages.

The following table describes the parameters.

Command Parameters

AOEXEC SELECT EXEC(‘execname parm1...parm2...parmn’)
[PRI(NORMAL|HIGH)]
[WAIT(NO|YES)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
[VAR(var1....var2....var3...varn)]

Parameter Function Notes

EXEC(‘execname and
any parms’)

Name of EXEC to invoke. If there are
parameters, the EXEC name and the
parameters must be enclosed in quotation
marks.

If only the EXEC name is specified, do
not use quotation marks.

Maximum length is 255 characters.
Required parameter.

PRI Execution priority of the EXEC to be
invoked

Either NORMAL or HIGH. Applies only
to EXEC keyword. It overrides
AAOEXP00 parameters. PRI is valid
with WAIT(YES) and WAIT(NO).

WAIT Suspension criterion for invoking EXEC Either YES or NO.

WAIT(YES) causes the AOEXEC
command to be suspended until the
invoked EXEC in the BBI-SS PAS has
completed. WAIT(NO) is returned as
soon as a determination has been made
whether the EXEC to be invoked actually
exists.

When VAR() is specified WAIT(YES)
will be forced.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.
Chapter 9. Performing Automation Using AOAnywhere165

AOEXEC SELECT

ent of

rget

ord
t

Return codes are listed in the following table and are set to the value specified in the IMFEXEC EXIT statem
the calling EXEC.

Example

This example command invokes the EXEC CHKENQ on the remote SS SYSB, passing the parameter
SYS2.PROD.XLIB.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

VAR Specifies the names of any number of
variables that will be exchanged with the
LOCAL variable pool of the selected
EXEC.

Before the target EXEC begins, the
contents of these variables are placed as
variables of the same name into the
LOCAL pool.

When the EXEC ends, the contents of
these variables in the target EXEC’s
LOCAL pool are extracted again and
placed as TSO variables of the EXEC of
the invoking EXEC.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC specified but is not found in BBPROC.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC SELECT EXEC(‘CHKENQ SYS2.PROD.XLIB’) SSID(RE61) TGTSS(SYSB)"

Parameter Function Notes
166 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SYSINFO

pport.
ame in
TOR
en

SSID
AOEXEC SYSINFO
Subject: AOEXEC SYSINFO
This command searches the current MVS image for an AutoOPERATOR subsystem that runs AOAnywhere su
It returns information in variables regarding the success and failure of this search, as well as the XCF group n
which the targeted (or defaulted to) subsystem resides. Additionally, it returns the identifiers of all AutoOPERA
subsystems that are connected to each other (in the sysplex) and it identifies those subsystems that have be
designated as Alert Receivers.

This information can be used in subsequent requests against AOAnywhere, which require the presence of a
identifier.

The minimum required version level for an AutoOPERATOR subsystem to support AOAnywhere is 6.1.

This command has the following parameters.

Command Parameters

AOEXEC SYSINFO [SS | SSID()]
[GROUP()]
Chapter 9. Performing Automation Using AOAnywhere167

AOEXEC SYSINFO
The following table describes the parameters.

Parameter Function Notes

SS | SSID SS | SSID() specifies the subsystem
identifier from which system information
is obtained. One to four alphanumeric
characters. Optional.

This parameter should be used only when
separate XCF groups will be used within
a sysplex. An XCF group for a specific
subsystem is specified on the
XCFGROUP= parameter in BBPARM
member BBISSP00. When this parameter
is specified, only information for the
subsystems connected to the same XCF
group as the targeted subsystem is
obtained. This parameter should not be
used in conjunction with the GROUP()
parameter.

When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the current
OS/390 image belonging to this group
will be referenced to obtain information
about all other AutoOPERATOR
subsystems connected to each other
through this XCF group.

GROUP GROUP() specifies the XCF group from
which information is obtained. One to
eight alphanumeric characters in
accordance with IBM XCF group names.
Optional.

This parameter should be used only when
separate XCF groups will be used within
a sysplex. An XCF group for a specific
subsystem is specified on the
XCFGROUP= parameter in BBPARM
member BBISSP00. When this parameter
is specified, only information for the
subsystems connected to the same XCF
group as the targeted subsystem is
obtained.

At least one AutoOPERATOR subsystem
that belongs to the specified XCF group
should reside on the current OS/390
image. Otherwise this request will fail.

XCFGROUP() or XCF() are valid aliases
of this command.

When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the current
OS/390 image belonging to this group
will be referenced to obtain information
about all other AutoOPERATOR
subsystems connected to each other
through this XCF group.
168 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SYSINFO

e)

e
l to

een

 a
The following table describes the variables that AOEXEC SYSINFO returns.

Return codes are listed in the following table.

Variable Name Description

SYSTEM The name of the current OS/390 image (commonly referred to as the system nam

ALRT1 through ALRTx A value of YES or NO. YES means this subsystem has been designated as an
ALERT receiver by specifying ALRTRCVE=YES in BBPARM member BBISSP00.
Otherwise the returned value is NO.

IMFXCFGP The name of the default or target XCF group referred to by the command. If the
SSID() parameter is specified, it contains the name of the XCF group of which th
targeted subsystem is a member. If GROUP() was specified, the name is identica
the contents of this keyword.

LCNT The number of lines returned.

SSID1 through SSIDx An AutoOPERATOR subsystem (SSID) name that is supporting AOAnywhere
where x is between 1 and the value contained in LCNT variable.

SYSN1 through SYSNx The names of the MVS images that the relative SSID is active on where x is betw
1 and the value contained in LCNT .

The SSID, SYSN and ALRT variables are returned in triplets. For example, SSID1, SYSN1 and ALRT1 are
returned together; SSID2, SYSN2 and ALRT2 are returned together, and so on.

Value Description

44 Processing was terminated in the middle of processing an AOEXEC SYSINFO.

If more than one AutoOPERATOR PAS capable of processing a AOEXnEC SYSINFO
command is active on the local system, it is possible that this situation is temporary and
subsequent execution of SYSINFO will be successful.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.
Chapter 9. Performing Automation Using AOAnywhere169

AOEXEC SYSINFO
Example

/* REXX */
"AOEXEC SYSINFO"
if rc<> 0 then do
 say 'No active subsystems found'
 exit
end
do i=1 to lcnt
 if value('SYSN'i)=system then do
 myss=value('SSID'i)
 mysys=value('SYSN'i)
 leave
 end
end
"AOEXEC VGET VAR(QJNLSTA) SSID("myss")"
say 'Current journaling status on 'strip(mysys)' is 'qjnlsta
170 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDEL
AOEXEC VDEL
Subject: AOEXEC VDEL
This command deletes one or more variables from one of the AutoOPERATOR variable pools.

The following table describes the parameters.

Command Parameters

AOEXEC VDEL [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
[VAR(var1....var2....var3...varn)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the
subsystem identifier of a local
subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is
specified, the subsystem
specified by the SS | SSID()
keyword is considered a router
and the actual function is
executed on the subsystem
specified by TGTSS(). If
TGTSS() is not specified, the
requested function is executed
on the subsystem specified by
the SS | SSID keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword, and
both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.
Chapter 9. Performing Automation Using AOAnywhere171

AOEXEC VDEL

t

Note: This command does not affect variables that have already been retrieved from one of the pools.

Return codes are listed in the following table.

VAR The name of one or more
variables

The maximum length of this parameter is
252 bytes. All variables in a pool can be
deleted by using the identifier ALL instead
of naming all variables individually. A
variable cannot begin with a numeric nor
can it contain special characters.

An example of using a pattern is

AOEXEC VDEL VAR(CICS*) SSID(RE61)

The variable names can be generically
expressed by using an asterisk. However,
the VDEL command statement assumes the
presence of an asterisk means the end of the
string.

AOEXEC VDEL VAR(ABC*D) SSID(RE61)

is treated as if you coded

AOEXEC VDEL VAR(ABC*) SSID(RE61)

In addition, if you try to use an asterisk
within a string of text, you will receive a
return code for invalid syntax usage. For
example, if you try to issue a pattern

AOEXEC VDEL VAR(CSM*MSG12)
SSID(RE61)

you will receive a return code of
IMFCC=16 (for invalid syntax usage).

Variables beginning with the character Q
are reserved for system variables and canno
be modified.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.

Parameter Function Notes
172 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDEL

LST

tem

l

Example

This example deletes all variables ending in the characters TEST from the shared variable pool. It uses the V
command to retrieve all variable names.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsys
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the loca
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"
do i=1 to lcnt
 if length(value('line'.i))< 4 then iterate
 if right(value(value(line.i)), 4)=’TEST’ then
 "AOEXEC VDEL VAR("value(line.i)") POOL(SHARED) SSID(RE61)"
end
Chapter 9. Performing Automation Using AOAnywhere173

AOEXEC VGET

 pool.

rget
AOEXEC VGET
Subject: AOEXEC VGET
This command copies one or more variables from one of the AutoOPERATOR pools into the EXECs function

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VGET [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR(var1....var2....var3...varn)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

VAR The name of one or more variables Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

12 Variable name not specified.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.
174 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VGET

ve the

ord
t

Example

This example displays the contents of the EXECs SHARED variable pool. It uses the VLST command to retrie
names of all variables in that pool.

It then uses the VGET command to retrieve them one after the other and displays their contents.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"
do i=1 to lcnt
 var=value(value(line)i)
 "AOEXEC VGET VAR("var") POOL(SHARED) SSID(RE61)"
 say var
end

Value Description
Chapter 9. Performing Automation Using AOAnywhere175

AOEXEC VLST
AOEXEC VLST
Subject: AOEXEC VLST
This command lists variable names defined in the AutoOPERATOR pools. It returns those names in LOCAL
variables LINE1 through LINEn and sets LCNT to the number of LINEs.

The following table describes the parameters.

Command Parameters

AOEXEC VLST [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR(variable name)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:

• SHARED
• PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword
176 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VLST

rget

ord
t

Return codes are listed in the following table.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function is
executed.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

VAR The name of one variable Required parameter.

Only one variable can be specified and
the name must be enclosed in
parentheses.

The variable name can be 1-30 characters
alphanumeric conforming to TSO coding
conventions.

The variable name can be a pattern

(A+B*)

where the following wildcards are
supported:

+ (plus sign)
Matches any one character.

* (asterisk)
Matches zero to any number of
characters.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

12 Variable pool is not available.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.
Chapter 9. Performing Automation Using AOAnywhere177

AOEXEC VLST

nd
ber
Example

The following EXEC uses the AOEXEC VLST command to retrieve all the variables that begin with RETRY a
then reports the number of retries. Variables LINE1 through LINExx (where xx is IMFNOL) will contain the num
of found variables.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

/* REXX */
"AOEXEC VLST VAR(RETRY*) POOL(SHARED) SSID(RE61)"
if rc = 8 then exit
do i=1 to lcnt
 contents=value('LINE'I)
 "AOEXEC VGET VAR("contents") SSID(RE61)"
 contents=value(contents)
 count=left(contents,6)
 nod=substr(contents,7)
 say 'Terminal : 'nod' Retries: 'count
END
178 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VPUT

pools.

rget
AOEXEC VPUT
Subject: AOEXEC VPUT
This command copies one or more variables from the EXECs function pool into one of the AutoOPERATOR

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VPUT [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]
VAR(var1....var2....var3...varn)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.

It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

VAR The name of one or more variables Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

Variables beginning with the character Q
are reserved for system variables and
should not be modified.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 Command was executed successfully.

4 Variable did not previously exist in the designated pool.

12 Q-type variable was specified and cannot be copied with VPUT.

16 Invalid syntax used.
Chapter 9. Performing Automation Using AOAnywhere179

AOEXEC VPUT

ch

ord
t

Examples

This section contains examples using the AOEXEC VPUT command statement. A brief discussion follows ea
example.

Example 1.

This example command saves the current value ofABENDS, ABENDCOUNT, andABENDREASON in the SHARED pool.

Example 2.

This example command saves the current value ofABENDS in the PROFILE pool.

20 Variable name is invalid.

24 Variable name was not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC VPUT VAR(ABENDS ABENDCOUNT ABENDREASON) POOL(SHARED) SSID(RE61)"

"AOEXEC VPUT VAR(ABENDS) POOL(PROFILE) SSID(RE61)"

Value Description
180 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDELL

LY
h the
AOEXEC VDELL
Subject: AOEXEC VDELL
This command deletes one or more long variables from one of the AutoOPERATOR variable pools.

Note: This variable operation only supports a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wit
specified name exists, it is ignored.

The following table describes the parameters.

Note: This command does not affect variables that have already been retrieved from one of the pools.

Return codes are listed in the following table.

Command Parameters

AOEXEC VDELL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

VAR The name of one or more variables Required parameter.

Each variable name can be up to 32
characters. Maximum parameter length
is 252.

Variables beginning with the character Q
are reserved for system variables and
cannot be modified.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.

It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.
Chapter 9. Performing Automation Using AOAnywhere181

AOEXEC VDELL

tem

l

Example

The PROFILE pool is searched for a long variable with the name of X. If found, it is deleted.

0 The variable existed in the target pool and has been deleted.

8 No long variable with this name has been found in the target pool.

12 An attempt to delete a read-only variable (for example, Q-type variable was specified
which cannot be deleted with VDELL).

16 Invalid syntax used.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsys
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the loca
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC VDELL VAR(X) POOL(PROFILE) SSID(RE61)"
182 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VGETL

LY
h the

rget
AOEXEC VGETL
Subject: AOEXEC VGETL
This command copies one or more long variables from one of the AutoOPERATOR pools into the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wit
specified name exists, it is ignored.

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VGETL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

VAR The name of one or more variables Required parameter.

Each variable name can be up to 30
characters.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function is
executed.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 The variable existed in the target pool and has been retrieved.

12 Variable name not specified.

16 Invalid syntax used.
Chapter 9. Performing Automation Using AOAnywhere183

AOEXEC VGETL

 and

ord
t

Examples

The PROFILE pool is searched for a long variable with the name of X. If found, it is placed into the TSO pool
assigned to the variable Y.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

"AOEXEC VGETL VAR(X) POOL(PROFILE) SSID(RE61)"
Y=X

Value Description
184 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VLSTL

LY
h the
AOEXEC VLSTL
Subject: AOEXEC VLSTL
This command retrieves a long variable from the specified pool and places it into the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wit
specified name exists, it is ignored.

The following table describes the parameters.

Command Parameters

AOEXEC VLSTL [POOL(SHARED|PROFILE)]
VAR(var)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:

• SHARED
• PROFILE

SHARED is the default.

VAR The name of one variable Required parameter.

Only one variable can specified and the
name must be enclosed in parentheses.

Each variable name can be up to 30
characters.

The variable name can be a pattern

(A+B*)

where the following wildcards are
supported:

+ (plus sign)
Matches any one character.

* (asterisk)
Matches zero to any number of
characters.
Chapter 9. Performing Automation Using AOAnywhere185

AOEXEC VLSTL

rget

ord
t

Return codes are listed in the following table..

Example

This EXEC lists all long variables in the SHARED pool and writes their names to the terminal.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function is
executed.

Optional keyword.

It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 At least one variable has been found.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword. The target subsystem is mos
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

/* REXX */
"AOEXEC VLSTL VAR(*) POOL(SHARED) SSID(RE61)"
say lcnt
do i=1 to lcnt
 name = value('line'i)
 say name
end
186 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VPUTL

mple,
AOEXEC VPUTL
Subject: AOEXEC VPUTL
This command creates a or sets a long variable from a variable in the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. For exa
no target system functionality is provided. It ONLY affects and searches for long variables. If a short
variable (created with VPUT instead of VPUTL) with the specified name exists, it is ignored.

The following table describes the parameters.

Command Parameters

AOEXEC VPUTL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

VAR The name of one or more variables Required parameter.

Each variable name can be up to 30
characters.

Variables beginning with the character Q
are reserved for system variables and
cannot be modified.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.

It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.
Chapter 9. Performing Automation Using AOAnywhere187

AOEXEC VPUTL

acters.

rget

ool.

ord

.

Return codes are listed in the following table.

Examples

This example saves the variable A to the SHARED pool. Note that the variable can be shorter than 255 char

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the ta
system was shut down in the middle of a request.

0 The variable existed in the target pool and has been overwritten.

4 The variable did not exist in the pool and has been created.

8 An error occurred during operation. Possible out-of-space condition for the PROFILE p

12 An attempt was made to set a read-only variable (for example, Q-type variable was
specified which cannot be set with VPUT).

16 Invalid syntax used.

20 Variable pool not found. BIVARS not allocated.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyw
and the subsystem specified using the TGTSS() keyword.cannot be found The target
subsystem is most likely not active or not in the same sysplex as originating subsystem

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

A='This is a test'
"AOEXEC VPUTL VAR(A) POOL(SHARED) SSID(RE61)"
188 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

onal
ioned and

es,
name, a
n.

cord.
veral
or
al with

ation

in rows
 as an

 into
ed as
XX

uded
rray
Chapter 10. Accessing Array Data with AutoOPERATOR
EXECs

This chapter describes how to use IMFEXEC ARRAY commands to access data collected in arrays.

Overview

This document outlines IMFEXEC ARRAY|ARY commands that enable you to access data from two-dimensi
variable arrays. Arrays bear some resemblance to ISPF tables in the way they can be scanned, sorted, posit
are backed by disk space.

When Are Arrays Useful

An EXEC often has to deal with many instances of the same data type for example: a number of unit address
TSO/E user names, job names, and so on. Often these data types are part of a record type. In addition to a job
job also has a jobstep name, a start time, elapsed CPU time, EXCPs and any amount of additional informatio

These data fields can be manipulated using REXX stem variables but only for a single column or field in a re
TSO/E CLIST EXECs cannot handle this type of data at all. When dealing with multiple fields, you might use se
REXX stem variables with the same index but many inefficient operations can result when swapping records
assigning them to a third record. Instead of referring to a single record, REXX stem variables force you to de
fields only, never considering them as related items.

Furthermore, scanning these records for particular contents or sorting and creating specific subsets of inform
becomes cumbersome and resource intensive.

This is where arrays come in: arrays represent data in row-column format where data items are kept together
or records. Instead of manipulating this data manually, certain operations may be performed against an array
entirety, such as sorting it based upon the contents of a column.

To process an array you create a reference to a specific row (also called a record) and retrieve the entire row
REXX variables. This operation potentially sets a great number of variables all at once. A row is always treat
one unit and the individual fields will never lose synchronization (which might occur when using individual RE
stem variables).

Other advantages to arrays include

• Rows can be filtered so that only those rows whose columns meet certain criteria are visible

• Rows can be sorted with one command

• Arrays can be shared among multiple EXECs and saved to permanent storage (DASD)

As a debugging aid, a sample Exec (DUMPARY) that writes the contents of an Array to the BBI journal is incl
in the BBSAMP library. You can invoke this EXEC from a BBI command line by passing to it, the name of the A
and the number of rows and columns to be displayed, for example:
%DUMPARY ARRAY(array) ROWS(50) COLS(10)
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs189

d.

r. All
as a
RY

m

where array is the name of an array saved on disk, and 50 rows with 10 columns in each row will be displaye
Additionally, you can invoke DUMPARY from within your own EXEC by specifying one of the following
commands:
IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)
or
call DUMPARY 'ARRAY(array) ROWS(n) COLS(n) CON(N)’

where array is the name of an array currently accessed by your EXEC. ARRAY is the only required paramete
parameters can be abbreviated for convenience. The parameter CON(N) is used when your EXEC already h
connection to the array. For more information about abbreviations and examples of how to invoke the DUMPA
EXEC, invoke it from the BBI journal command line, passing to it, the text 'help'. Then read the output in the BBI
journal. For example, specify:
%DUMPARY HELP

Note: If you do not specify a value forROWS() orCOLS(), the entire array will be written to the journal. Be sure
that either the BBSAMP library is in your SYSPROC concatenation or copy the DUMPARY EXEC fro
BBSAMP to another library concatenated to SYSPROC.
190 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

page

.

IMFEXEC ARRAY Commands

The following table lists the IMFEXEC ARRAY commands you can use to access information in arrays and the
where you can find more information.

Command Page Function

CONNECT 193 Establishes a logical connection between one or more EXECs and an array

CREATE 195 Defines a new array by providing definitions of its logical characteristics.

DELETE 197 Deletes a row from an array.

DISC 198 Terminates a logical connection between one or more EXECs and an array.

FIND 200 Locates a particular row conforming to a set of criteria.

GET 202 Transfers the current array row into local variables.

INFO 203 Provides information about an array.

INSERT 205 Inserts a new row into an array.

LIST 206 Provides information about saved or disconnected arrays (when kept).

PUT 207 Sets the current array row from local variables.

SAVE 208 Checkpoints the contents of an array to disk.

SET 209 Transfers an array into REXX TSO/E variables.

SETVIEW 210 Limits array access to rows matching certain criteria.

SORT 212 Sorts an array according to one or more criteria.
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs191

nd

icts

or one

g

d. The

as

n alias
General Coding Conventions

The following sections briefly describe the coding conventions for using the IMFEXEC ARRAY | ARY comma
statements.

Note: Every command described in this chapter is prefixed by the literal ARRAY | ARY to avoid naming confl
with existing IMFEXEC constructs. ARY is a valid abbreviation.

For example:

IMFEXEC ARRAY|ARY command [parameters]

Using Variable Names

Variable names are limited to 31 characters in length. The first character of the variable must be alphanumeric
of the following special characters:

• $

• @

• #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO/E pool. Refer to Chapter 4, “Usin
Variables in REXX EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the comman
table uses the following format:

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly
shown.

If parts of the identifier are shown inbold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains a
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

Parameter Function Notes

1 2 3
192 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY CONNECT

or a
s left

d

ARRAY CONNECT
Subject: ARRAY CONNECT

This command establishes a logical connection between one or more EXECs and an array.

The following table describes the parameters.

When retrieving an array from disc, the current position is at the very beginning of the array. Neither a View n
Sort specification will exist. When reconnecting to a kept array position, Sort and View criteria will be exactly a
off.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY CONNECT NAME
[ACCESS(UPDATE|READ)]
[TOKEN()]
[MSG|NOMSG]

Parameter Function Notes

NAME The name of the array as established
during array creation

1-31 characters alphanumeric

This parameter is required.

ACCESS Array access definition UPDATE is the default value.

Multiple read accesses by separate
threads to an array are possible. However,
UPDATE requires exclusive access.

TOKEN Array token returned by DISC KEEP When not specified, the array is retrieve
from DASD. When specified, only
disconnected arrays are eligible.

Message option Controls the writing of exception
messages to the journal

One of the following values:

MSG
Exception messages are written to
the journal.

NOMSG
No exception messages are
written to the journal (default).

Value Description

0 Command was executed successfully.

8 Array not found or error reading from disc / cannot create temp copy.

16 Syntax error.
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs193

ARRAY CONNECT

he

e

nal.
Example

The EXEC attempts to establish a connection to the array named DASDSTATS that it assumes has been
disconnected. If this attempt fails, a disc copy is loaded.

Note: After invoking the ARRAY CONNECT command, you can call the debugging EXEC, DUMPARY, that
was first described in the section entitled “When Are Arrays Useful” on page 189. By adding one of t
following statements following the ARRAY CONNECT command,

IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)

or

CALL DUMPARY 'ARRAY(array) ROWS(n) COLS(n) CON(N)'

where array is the name of the array returned by ARRAY CONNECT to your EXEC, you can write th
contents of the array to the BBI journal.

Note that if you do not specify a value for ROWS() or COLS(), the entire array will be written to the jour

"IMFEXEC ARRAY CONNECT DASDSTATS TOKEN("arytoken")"
if imfcc <> 0 then "IMFEXEC ARRAY CONNECT DASDSTATS READ"
194 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY CREATE

ys that
 is as
ARRAY CREATE
Subject: ARRAY CREATE
This command defines a new array to AutoOPERATOR.

The following table describes the parameters.

After successful execution of the command the array will be in UPDATE access. It is possible to redefine arra
currently exist and to overwrite them when saving. The format of the array definition in the indicated variables
follows:

• Column name (1-255 chars, TSO/E conforming)

• Column width (1-32767, numeric)

• Format (must be C currently)

• User data pertaining to this field (1-32767 chars, no restrictions, optional)

Individual fields are separated by one or more spaces.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY CREATE NAME
STEM(stem name)
INITIAL()
[INC()]

Parameter Function Notes

NAME The name of the new array to define 1-31 characters alphanumeric

STEM Variable root name of a set of variables
containing the array definition

The format is identical to the format
above. Under REXX, true stem variables
will be referenced whereas under TSO/E
a numeric is appended to the name.

The low index is assumed to be 1. The
definition continues until either a null or
undefined variable is encountered.

INITIAL Initial size in rows of the array 1-32767 numeric

INC Increment to be used when extending the
array

1-32767 numeric

Value Description

0 Command was executed successfully.

8 Invalid or incomplete array definition.

16 Syntax error.
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs195

ARRAY CREATE

e
is set to
Example

This EXEC defines a new array with 3 columns unit: VOL and STAT. It does so by defining 3 variables with th
contents of the definition. Although not absolutely necessary in this example, be sure the succeeding variable
null and the definition processor invoked.

The array definition is then saved.

array.1='UNIT 3 C'
array.2='VOL 6 C'
array.3='STAT 8 C'
array.4=''
"IMFEXEC ARRAY CREATE DASDSTATS STEM(ARRAY) INITIAL(500) INC(50)"
"IMFEXEC ARRAY DISC DASDSTATS SAVE"
196 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY DELETE

to the
ARRAY DELETE
Subject: ARRAY DELETE
This command deletes the current row from the array.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC deletes all rows in an array beginning with those rows where variable VOL is greater than or equal
string BAB.

Command Parameters

ARRAY|ARY DELETE NAME

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was executed successfully

4 Array is empty

8 Array is not found

12 Array is not in UPDATE access

16 Syntax error

"IMFEXEC ARRAY CONNECT DASDSTATS"
"IMFEXEC ARRAY FIND DASDSTATS CRITERIA(’VOL,,,>=, ’’BAB’’’) ROW(1)"
do while imfcc=0
 "IMFEXEC ARRAY DELETE DASDSTATS"
 "IMFEXEC ARRAY FIND DASDSTATS CRITERIA(’VOL,,,>=, ’’BAB’’’) ROW(1)"
end
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs197

DISC

ON).
ARRAY DISC
Subject: DISC
This command terminates a logical connection with an array.

The following table describes the parameters.

The following table describes the TSO/E variables returned from DISC (when KEEP is specified as the ACTI

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY DISC NAME
[ACTION(SAVE|NOSAVE|DELETE|KEEP)]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

ACTION Action to take upon termination One of the following values:

SAVE
Saves all updates since the last
save to disk and saves the cursor
position

NOSAVE
Discards all changes since last
save

DELETE
Discards all changes and removes
array definition

KEEP
Retain array as-is in memory for
future reference. See the
following table for more
information.

TSO/E Variables Returned from DISC

NAME Contents Length/Format Notes

ARYTOKEN Token to be used to
reconnect to the array

15/Character Properties determined by
internal design

Value Description

0 Command was executed successfully.

8 Failure to save array not found (never connected or created).

16 Syntax error.
198 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

DISC

d it
onnects
Example

This EXEC attempts to establish a connection with an array named DASDSTATS. If the array cannot be foun
terminates with a message and a return code of 8. Otherwise it reads the first row from the array and then disc
from it with the default action setting of NOSAVE.

"IMFEXEC ARRAY CONNECT DASDSTATS"
if imfcc <> 0 then do
 "IMFEXEC MSG ’***** FATAL ERROR *****’"
 "IMFEXEC EXIT CODE(8)"
 exit
end
"IMFEXEC ARRAY FIND DASDSTATS ROW(1)"
"IMFEXEC ARRAY GET DASDSTATS"
"IMFEXEC ARRAY DISC DASDSTATS"
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs199

ARRAY FIND

one of

med.

s such
ARRAY FIND
Subject: ARRAY FIND
This command positions an array's CURRENT row pointer at the first row meeting specified criteria.

The following table describes the parameters

Any number of criteria may be specified, connected by the Boolean operators AND and OR. Entries may be of
the following two formats:

• Boolean operator (AND, OR), except for first criterion.

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting position

• Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <, < =, =, > =, >, < >, ^ =

Or

• Boolean operator (AND, OR), except for first criterion

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting position

• Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <, <=, =, >=, >, < >, ^=

• Literals are enclosed in quotation marks

The following rules also apply:

• When both fields contain numerics (except leading and trailing blanks), a numerical comparison is perfor
Both numbers will always be treated as unsigned integers.

• When a comparison with a literal is requested, a pattern comparison is performed (for example, wildcard
as * and + may be used).

Command Parameters

ARRAY|ARY FIND NAME
[ROW]
[CRITERIA]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

ROW Starting row for scan The default is the current row

Numeric, the first element of an array is
indexed by 1.

CRITERIA Criteria to which the row must conform See the comments below the table.
200 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY FIND

two is

h them.
• When two columns with different lengths are compared, a comparison with the length of the shorter of the
done.

Condition codes are listed in the following table.

Example

This EXEC connects to the array user ID that contains information about user IDs and accounts associated wit
It then finds all user IDs belonging to account 3911 and prints them in the BBI-SS log.

Value Description

0 Command was successfully executed.

4 Criteria parsing error.

8 Array not found.

12 Row specification past array extension or 0.

16 Syntax error.

"IMFEXEC ARRAY CONNECT USERID"
"IMFEXEC ARRAY FIND USERID CRITERIA(’ACCT,,,=,’’3911’’’) ROW(1)"
do while imfcc=0
 "IMFEXEC ARRAY INFO USERID"
 "IMFEXEC ARRAY GET USERID"
 "IMFEXEC MSG "userid
"IMFEXEC ARRAY FIND USERID CRITERIA(’ACCT,,,=,’’3911’’’) ROW("arypos+1")"
end
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs201

ARRAY GET

hen

ode
ARRAY GET
Subject: ARRAY GET
This command identifies the view to be used for accessing data.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC locates the row containing the definition for volume BAB301 in the array named DASDSTATS. It t
retrieves the current status of this volume and writes it to the log.

Command Parameters

ARRAY|ARY GET NAME
[TRIM|NOTRIM]
[SKIP|NOSKIP]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TRIM Defines whether leading and trailing
blanks are removed (trimmed)

The default is TRIM which means blanks
are removed.

SKIP Advances the current row pointer by 1
after retrieving the contents of the row

Possible values are SKIP and NOSKIP.
SKIP is the default.

Value Description

0 Command was successfully executed.

4 Array is empty / no matching rows for SETVIEW.

8 Array not found.

16 Syntax error.

20 If SKIP was specified (or defaulted to) and the last row of the table was read, a return c
of 20 will be returned.

"IMFEXEC ARRAY CONNECT DASDSTATS"
"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,’’BAB301’’’)"
"IMFEXEC ARRAY GET DASDSTATS"
"IMFEXEC MSG VOL BAB301 Status: "stat
202 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY INFO
ARRAY INFO
Subject: ARRAY INFO
This command identifies the view to be used for accessing data.

The following table describes the parameters.

The following table describes the TSO/E variables returned from INFO.

Command Parameters

ARRAY|ARY INFO NAME

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TSO/E Variables Returned from INFO

NAME Contents Length/Format Example

ARYROWS Number of active rows in
the array

0-32767 numeric

ARYFRAME Number of total rows
currently allocated for the
array

1-32767 numeric Corresponds to the initial()
specification during array
creation but may change as the
array is extended

ARYINC Increment used when
extending the array

1-32767 numeric Corresponds to the inc()
specification during array
creation

ARYSTOR Total number of bytes
occupied by the array
itself and all associated
control blocks

numeric This includes the array itself,
the array descriptor block,
lookaside tables as well as sort
and filter descriptor blocks.

ARYLROWS Number of rows matching
the current view

0-32767 numeric

ARYCOLS Number of columns of the
array

1-32767 numeric

ARYPOS Current position within
the array

1-32767 numeric

ARYSORT Specifies whether sort
criteria have been
attached to the array

YES or NO
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs203

ARRAY INFO

ose
s of
Condition codes are listed in the following table.

Example

This EXEC connects to the array named DASDSTAT and establishes a view of the array which makes only th
rows eligible where column STAT has the contents of ACTIVE. It then sorts the resulting array by the content
column VOL and produces a list of all matching rows.

ARYFILTER Specifies whether a view
has been attached to the
array

YES or NO

ARYCOLN.n The name of all columns
of the array

1-255, character ARYCOLN.1, ARYCOLN.2
etc.

ARYCOLW.n The width of the indicated
column

1-32767 numeric ARYCOLW.1, ARYCOLW.2
etc.

Value Description

0 Command was successfully executed.

8 Array not found.

16 Syntax error.

"IMFEXEC ARRAY CONNECT DASDSTAT"
"IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,’’ACTIVE’’’)"
"IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:"
do I =1 to arylrows
 "IMFEXEC ARRAY GET DASDSTAT"
 "IMFEXEC ARRAY MSG "vol
end

TSO/E Variables Returned from INFO
204 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY INSERT

t then
ARRAY INSERT
Subject: ARRAY INSERT
This command identifies the view to be used for accessing data.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC inserts a new row into the array referenced by the token contained in the variable DASDSTATS. I
sets the value of this row and checkpoints the contents of the array to permanent storage.

Command Parameters

ARRAY|ARY INSERT NAME
[POSITION(HERE|FIRST|LAST)]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

POSITION Position in the array where row will be
inserted

Could be one of the following values:

HERE
At the current position

FIRST
At the top of the array (element 1)

LAST
As the last element of the element

If the array is ordered, the current position
will always be determined by the sort
criteria and field contents and this
specification will be ignored.

Value Description

0 Command was successfully executed.

8 Array not found.

12 Array not in UPDATE access.

16 Syntax error.

unit=3E0
vol=BAB301
stat=ACTIVE
"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs205

ARRAY LIST
ARRAY LIST
Subject: ARRAY LIST
This command provides information about arrays in this BBI-SS PAS.

The following table describes the parameters.

The following table describes the TSO/E variables returned from LIST.

Condition codes are listed in the following table.

Example

This EXEC locates all disconnected arrays. It subsequently deletes all of them.

Command Parameters

ARRAY|ARY LIST [KEPT]

Parameter Function Notes

KEPT Provide information about disconnected
arrays in storage (DISC with KEEP)

TSO/E Variables Returned from LIST

NAME Contents Length/Format Example

ARYNAMEXX Name of the array 1-31 characters

ARYTOKNxx Token of the array if
disconnected

15 characters

ARYCOUNT Count of arrays found

Value Description

0 Command was successfully executed.

16 Syntax error.

"IMFEXEC ARRAY LIST KEPT"
do j=1 to arycount
 "IMFEXEC ARRAY CONNECT "aryname.j" TOKEN("arytokn.j")"
 "IMFEXEC ARRAY DISC "aryname.j" NOSAVE"
end
206 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY PUT

s the
ARRAY PUT
Subject: ARRAY PUT
This command sets values of the current row of an array.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC locates the row containing the definition for volume BAB301 in the array DASDSTATS. It then set
current status of this volume.

Command Parameters

ARRAY|ARY PUT NAME

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was successfully executed

8 Invalid array token

12 Array not in UPDATE access

16 Syntax error

"IMFEXEC ARRAY CONNECT DASDSTATS UPDATE"
"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,’’BAB301’’’)"
"IMFEXEC ARRAY GET DASDSTATS"
stat=ACTIVE
"IMFEXEC ARRAY PUT DASDSTATS"
"IMFEXEC ARRAY DISC DASDSTATS SAVE"
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs207

ARRAY SAVE

annot

t then
ARRAY SAVE
Subject: ARRAY SAVE
This command checkpoints an AutoOPERATOR array. An array that was connected with the PAGE keyword c
be saved. Use DISC/CONNECT for these arrays instead.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC inserts a new row into the array referenced by the token contained in the variable DASDSTATS. I
sets the value of this row and checkpoints the contents of the array to permanent storage.

Command Parameters

ARRAY|ARY SAVE NAME

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was successfully executed.

8 Array not found or I/O error writing to disk.

16 Syntax error.

unit=3E0
vol=BAB301
stat=ACTIVE
"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"
208 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SET

tical to
nd

ppends
 of 8 is

es. It
ARRAY SET
Subject: ARRAY SET
This command transfers the entire contents of an array into REXX variables.

The following table describes the parameters.

This command takes all rows and columns and creates REXX variables from them. Each variable name is iden
the column that it was derived from. A period ‘.’ is then appended (effectively turning it into a stem variable) a
then a counter is added for the row that it was copied from.

For example: For a column of UNIT, TSO/E variables of the name UNIT.1 to UNIT.xx are created.

This command functions properly only on column names that do not exceed 26 characters in length (since it a
.(_)xxxxx to the variable name). If column names exceeding 26 characters in length are found, a return code
returned.

Condition codes are listed in the following table.

Example

This EXEC connects to the array DASDSTAT and sets all columns and rows to their respective REXX variabl
then writes a message to the log designating the contents of the ‘unit’ column of the first row.

Command Parameters

ARRAY|ARY SET NAME
[TRIM|NOTRIM]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TRIM Defines whether leading and trailing
blanks are removed (trimmed)

The default is NOTRIM.

Value Description

0 Command was successfully executed.

4 Array is empty.

8 Array not found or column name wider than 26 characters was found.

16 Syntax error.

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SET DASDSTAT”
"IMFEXEC ARRAY DISC DASDSTAT NOSAVE"
"IMFEXEC MSG "unit.1
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs209

ARRAY SETVIEW

of the
ARRAY SETVIEW
Subject: ARRAY SETVIEW
This command limits access to an array to those rows matching certain criteria.

The following table describes the parameters.

Any number of criteria may be specified, connected by Boolean operators AND and OR. Entries may be of one
following two formats:

• Boolean operator (AND, OR), except for first criterion when not specifying APPEND.

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting position

• Comparison operator, one of the following: LT, LE, EQ, GE, GT,NE,<,<=,=,>=,>,<>,^=

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting position

Or

• Boolean operator (AND, OR), except for first criterion

• Column name, 1-255 characters

• Starting position, default is 1

Command Parameters

ARRAY|ARY SETVIEW NAME
[CRITERIA]
[FUNCTION(DELETE|APPEND)]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

CRITERIA Criteria to which that the row must
conform

See comments below this table

FUNCTION Indicator on how to treat specs One of the following values:

DELETE
Remove all filter criteria.

APPEND
Append this specification to any
already existing specifications.

Otherwise, create a new view with the
given criteria.
210 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SETVIEW

med.

s such

two is

s
olumn
• Length used for comparison, default width of column+1 - starting position

• Comparison operator, one of the following: LT, LE, EQ, GE, GT,NE,<,<=,=,>=,>,<>,^=

• Literal enclosed in quotation marks

The following table describes the TSO/E variables returned from SETVIEW.

The following rules apply:

• When both fields contain numerics (except leading and trailing blanks), a numerical comparison is perfor
Both numbers will always be treated as unsigned integers.

• When a comparison with a literal is requested, a pattern comparison is performed (for example, wildcard
as * and + may be used).

• When two columns with different lengths are compared, a comparison with the length of the shorter of the
done.

Condition codes are listed in the following table.

Example

This EXEC connects to the array DASDSTAT and establishes a view of the array which makes only those row
eligible where column STAT has the contents of ACTIVE. It then sorts the resulting array by the contents of c
VOL and produces a list of all matching rows.

TSO/E Variables Returned from SETVIEW

NAME Contents Length/Format Example

ARYLROWS Number of rows matching
the current view

0-32767 numeric

Value Description

0 Command was successfully executed.

8 Array not found.

12 Criteria parsing error.

16 Syntax error.

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,”ACTIVE’’’)”
“IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)”
“IMFEXEC ARRAY INFO DASDSTAT
“IMFEXEC MSG The following volumes are active:”
do i=1 to railways
 “IMFEXEC ARRAY GET DASDSTAT SKIP”
 “IMFEXEC ARRAY MSG “Val
end
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs211

ARRAY SORT

high
fiy the
ARRAY SORT
Subject: ARRAY SORT
This command sorts an array according to user specifications. This command is invalid for arrays that were
connected using the PAGE keyword.

The following table describes the parameters.

After specifying a sort order for an array, the array will be kept sequenced when further insert activity occurs. If
insert activity is expected, it is advisable to remove ordering temporarily, insert all changes, and then respeci
sort order. SORT and SETVIEW may be specified in conjunction.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY SORT NAME
[CRITERIA(colname,(START),(LENGTH),(ORDER))]
[DELETE]

Parameter Function Notes

NAME The name of the array as established
during array creation

1- to 31-characters alphanumeric.

CRITERIA Sort criteria to be used The contents of this parameter are:

colname,START,LENGTH,ORDER

where

colname
Name of the referenced column in
the array

START
Starting position for sort argument
(default is 1)

LENGTH
Length of comparison (default is
length of column)

ORDER
Ascending or descending

Multiple sort arguments may be supplied

DELETE Removes any array ordering Default is delete.

Removes any sequence binding

Value Description

0 Command was successfully executed.
212 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SORT
Example

This EXEC connects to the array DASDSTATS and sorts by the columns STAT and VOL in ascending order.

4 Criteria parsing error (invalid or missing criteria definition).

8 Array not found.

16 Syntax error.

"IMFEXEC CONNECT DASDSTATS"
"ARRAY SORT MYTEST CRITERIA('ROW1,,,A')"
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs213

ARRAY SORT
214 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 with

 from

 array
189.

ould

sses
In most
at are

the
tion

bles.

ng
 the
ader line
Chapter 11. Using the MAINVIEW API

This chapter describes how to use the MAINVIEW API. The MAINVIEW API includes specific commands,
functions and facilities that allow AutoOPERATOR users to access data available on the MAINVIEW Databus
AutoOPERATOR EXECs.

Note that the use of this API requires that you are familiar with MAINVIEW AutoOPERATOR IMFEXEC
commands and MAINVIEW technology. The API is a cross-platform product which allows you to access data
MAINVIEW technology using AutoOPERATOR automation techniques.

It is also recommended that you have some knowledge about how to use AutoOPERATOR EXECs to access
data. For information about this facility, refer to “Accessing Array Data with AutoOPERATOR EXECs” on page

Overview

The following discussions introduce the MAINVIEW API and describe how to use it.

What Is the MAINVIEW API

The MAINVIEW API allows for a one-way data exchange between MAINVIEW-based products such as
MAINVIEW for CICS, MAINVIEW for OS/390, MAINVIEW for IMS (and others) and AutoOPERATOR REXX or
CLIST EXECs. Through the API, AutoOPERATOR EXECs can explicitly request the data from a MAINVIEW
product through an EXEC. The MAINVIEW API allows AutoOPERATOR to gather data from the MAINVIEW
Databus to flow from any of the MAINVIEW products into AutoOPERATOR.

AutoOPERATOR EXECs process the MAINVIEW data based on how a MAINVIEW view looks during a
MAINVIEW terminal session. This means you will see the exact same output in an EXEC for a view as you w
when it is displayed from a MAINVIEW terminal session.

Data from the MAINVIEW databus is shown in rows and columns (tabular format) so AutoOPERATOR proce
MAINVIEW data as an array. An array is a table that consists of one or more columns that are given names.
instances, an array is processed one row at a time, retrieving the contents of that row into TSO/E variables th
available to an EXEC. There is a one-to-one relationship between the columns of a view and the columns in
resulting array. Refer to “Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS” for more informa
about the naming conventions for array columns.

Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS

Before AutoOPERATOR EXECs can access MAINVIEW data, you must perform two tasks:

• Customize the MAINVIEW views so that the EXECs can successfully retrieve the column names in varia

• Connect the BBI-SS PAS to a CAS.

Customizing MAINVIEW Views

There is a relationship between the columns in a MAINVIEW view and the column names of the correspondi
array. This relationship is the name of the first header line of a column in a view is the name of the column of
generated array and is also the name of the variable used when retrieving the row of an array (the second he
is ignored).
Chapter 11. Using the MAINVIEW API 215

ct
nnot

f a
ou can
lid

en
cility to
ch as

en you
ew
t width

of all
re one
ide, the

n a
aracters

he
While this naming convention is intuitive, it poses one major problem: many header lines in MAINVIEW produ
views do not follow TSO/E variable naming conventions. For example, if a column is titled % TOT CPU, this ca
produce valid variable name because

• It begins with a percent sign (%)

• It contains blanks

The resulting array will show columns with these invalid names but you will still be able to retrieve the rows o
cloumn. The array accepts these invalid names and this allows for simpler debugging when problems arise. Y
use the IMFEXEC ARRAY INFO command to display the names of the columns of an array and spot the inva
names.

To resolve these issues, in most cases you must customize a MAINVIEW view to meet a specific need and th
update the header lines. The column headers are automatically translated to uppercase. Use the MV CUST fa
create these views which will also allow you to eliminate columns of data that your EXEC is not interested in (su
bar graphs).

Save the customized views and make them available to your BBI-SS PAS by adding a BBVDEF or other DD
statement and ensuring that a member in this data set contains the customized view. Refer to theMAINVIEW
Common Customization Guide and “MAINVIEW VIEW” on page 230 for information about BBVDEF and DD
statements.

Understanding Tabular and Detail Views

The MAINVIEW API supports both tabular and detail views.

When you choose to see data from a detail view, only one row containing the requested data is returned. Wh
choose to see data from a tabular view, the data returned is exactly the same as the width specified by the vi
customization. Header widths and data widths are independent from each other and you can specify a differen
for every column.

Detail views are returned in the same format as they are displayed in the view. A detail view expands the widths
columns in a row to match the size of the largest row. For example, if you specify three items in one row whe
column is 8 characters wide, the second column is 12 characters wide and the third column is 15 characters w
data on the screen is aligned so that each item occupies a cell that is 15 characters wide.

The MAINVIEW API follows the same principle. Therefore, if you request data through the API where a row i
detail view is set up as described above, the result creates an array where each variable has a width of 15 ch
instead of 3 variables of 8, 12 and 15 characters.

Connecting a BBI-SS PAS to a CAS

The second requirement is to ensure your BBI-SS PAS is connected to a CAS. Specify the ID of the CAS in t
BBPARM member BBISSP00 with the CASID= parameter.

When this is finished, you will see the message

CT3333I PAS ssid connected to CAS xxxx

during the startup of your AutoOPERATOR BBI-SS PAS wherexxxx is the name of the CAS you specified with the
CASID= parameter.
216 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ue. One
ome

an

ecific

rminal
an one

SG

ll
t

s you
 not be
essages

_xx.

useful
es. If
hen the

and

XT
uld like
se
If you do not see this message, you must determine the cause of the missing connection before you can contin
thing you can try is to establish a MAINVIEW terminal session, connect with the PAS in question and to invoke s
views of the products. If you cannot see data, the products will also be unavailable to the MAINVIEW API.

Once the MAINVIEW views are created and stored and the BBI-SS PAS is communicating with a CAS, you c
proceed to writing AutoOPERATOR EXECs.

Using the IMFEXEC MAINVIEW Commands

The following sections provide information about the IMFEXEC MAINVIEW commands and using them with
specific parameters.

IMFEXEC MAINVIEW CONNECT

Use the IMFEXEC MAINVIEW CONNECT command to establish a channel.

Channels are the equivalent of a terminal session that interacts with MAINVIEW products. They are a simple
abstraction of a terminal session: they do not require you to log on to anything and they do not require any sp
definition; you must acquire one.

One advantage of channels is that you can have multiple channels just as if you had set up any number of te
sessions. Therefore, if your EXEC has to address many different products or views, it is easy to set up more th
channel.

The IMFEXEC MAINVIEW CONNECT command has two parameters: Channel (a required parameter) and M
(an optional parameter).

The Channel parameter is required to address a specific channel (because you can have more than one) in a
IMFEXEC MAINVIEW operations. You can provide the name of a TSO/E variable that will receive a token tha
uniquely identifies the channel you are addressing. The contents of this variable is used in later IMFEXEC
MAINVIEW operations.

Use the MSG parameter to write any error messages to the BBI Journal. During a MAINVIEW terminal session
might have experienced a sequence of cascading error messages that explain why a specific operation could
executed. These exact same statements are turned to an EXEC when an operation failed. By default these m
are added as variables LINE.0 to LINE.xx. In a TSO/E CLIST, the messages are returned as LINE_0 to LINE

While you can process these error messages programmatically, during development of a new EXEC it may be
to see them in the BBI Journal without having to explicitly write them out which is what the MSG parameter do
specified, any error message associated with an operation using this channel is written to the BBI Journal. W
EXEC reaches a production stage, you can remove the MSG parameter to avoid cluttering the Journal.

In summary, a channel is a data transport vehicle requested with the IMFEXEC MAINVIEW CONNECT comm
and identified by the contents of a variable that you specific.

IMFEXEC MAINVIEW CONTEXT

After a channel is established, point the channel at a particular context with the IMFEXEC MAINVIEW CONTE
command. The only two parameters absolutely required are the channel you are using and the product you wo
to request data from (refer to “MAINVIEW CONTEXT” on page 223 for more information). However you can u
this command to point to a specific target or server. By doing this you can use SSI views right out of
AutoOPERATOR without having to consolidate the results yourself.
Chapter 11. Using the MAINVIEW API 217

r and
ed

t as you

and

word

oid

5.

ite an

he first

 For
se you

om a

re the data

to

 all
r

 up will
If the target is currently unavailable, you can retry at a later point in time or you can code the WAIT paramete
give the API the opportunity to watch for the availability of your context. If the WAIT times out, you are inform
and you can take other actions.

IMFEXEC MAINVIEW VIEW

Once you have gained access to the product, you can access data from the view that you are interested in (jus
would in a regular terminal session) with the IMFEXEC MAINVIEW VIEW command. Refer to “MAINVIEW
VIEW” on page 230 for more information.

IMFEXEC MAINVIEW VIEW returns the view name and channel token. The API validates that the view exists
reads its definition.

IMFEXEC MV VIEW will, by default, use views allocated to DDNAME BBVDEF, whether that DDNAME was
allocated through JCL or dynamically allocated. This DDNAME can be overridden with the DD(ddname) key
on the IMFEXEC MV VIEW command.

You might also consider adding view libraries to the currently existing BBIPARM DDNAME concatenation to av
the need to modify JCL. However, in that case, DD(BBIPARM) must be coded on the IMFEXEC MV VIEW
statement.

The data set containing views must have a dataset attribute of LRECL 80.

IMFEXEC MAINVIEW GETDATA

Use IMFEXEC MAINVIEW GETDATA to retrieve the actual data. Refer to“MAINVIEW GETDATA” on page 22

The two required parameters for this command are the channel name (CHANNEL) and the name of an array
(ARRAY). The array is built using the column names you specify and it has as many rows as necessary to
accommodate all the data. Make sure the array does not already exist because this command will not overwr
existing array.

Another parameter that is required the first time you issue this command is REFRESH. If you request data for t
time you must specify this keyword or no data will be returned.

Using the REFRESH parameter is very critical when you need to process subsets of data from a large array.
certain views, a large amount of data may be returned and you will want to process data in subsets. In this ca
can use the parameters START and COUNT which allow you to specify (in terms of rows) a subset of data fr
view.

As you process these subsets of data, do not use the REFRESH parameter on subsequent operations to ensu
in the view is constant. When you want fresh data to be retrieved, use the REFRESH parameter again.

If neither the START nor the COUNT parameters are specified, all of the available data is returned.

When the data is available to you in the array, you can process it using IMFEXEC ARRAY statements. Refer
“Accessing Array Data with AutoOPERATOR EXECs” on page 189.

Once you are have retrieved you data and no longer have a use for the channel, it is good practice to release
resources with the IMFEXEC MAINVIEW RELEASE command (“MAINVIEW RELEASE” on page 227). If you
EXEC immediately terminates after doing so you can skip the release step because EXEC termination clean
release the resources for you.
218 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

etween

.

If you do not need the contents of the array anymore, disconnect from it. Remember, arrays can be passed b
EXECs and as such termination cleanup will KEEP the array, just in case another EXEC needs it.

The following table lists the IMFEXEC MAINVIEW commands and the page number for additional information

Command Page Function

CONNECT 221 Request a new channel to be used in subsequent requests.

CONTEXT 223 Connect a channel with a specified context or target.

GETDATA 225 Return collected view data.

RELEASE 227 Release all resources associated with a channel.

TRACE 228 Turn TRACE information on or off.

VIEW 230 Identify the view to be used for accessing data.
Chapter 11. Using the MAINVIEW API 219

s.

or one

d. The

as

n alias

ke the
General Coding Conventions

The following sections briefly describe the coding conventions for using the IMFEXEC MAINVIEW command

Note: Every command described in this chapter is prefixed by the literal MAINVIEW | MV to avoid naming
conflicts with existing IMFEXEC constructs. MV is a valid abbreviation.

Using Variable Names

Variable names are limited to 32 characters in length. The first character of the variable must be alphanumeric
of the following special characters:

• $

• @

• #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO pool. Refer to Chapter 4, “Using
Variables in REXX EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the comman
table uses the following format:

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly
shown.

If parts of the identifier are shown inbold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains a
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

Note: When you invoke a REXX EXEC that has at least one keyword on the PROC statement, you must invo
EXEC using at least one keyword.

Parameter Function Notes

1 2 3
220 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW CONNECT

ted before

iable

as
act

e
fter
MAINVIEW CONNECT
Subject: MAINVIEW CONNECT

This command causes a new channel to be used in subsequent channel requests. A channel must be connec
any MAINVIEW data can be requested using the low-level API.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

MAINVIEW|MV CONNECT Channel
[MSG |NOMSG]

Parameter Function Notes

Name of channel Variable name to receive the token that
will identify the connected channel.

1- to 32-characters alphanumeric.

This variable name will be used by other
IMFEXEC MAINVIEW statements

Message option Controls the writing of exception
messages to the journal.

One of the following values:

MSG
Exception messages are written to
the journal.

NOMSG
No exception messages are
written to the journal (default).

Value Description

0 A new channel was successfully connected and may be referenced by the supplied var
token.

8 A channel could not be acquired. This condition can occur when a BBI-SS PAS or CAS h
not been started. Otherwise, use MV TRACE to collect trace information and then cont
BMC Customer Support.

16 Syntax error detected during parsing:

• Invalid keywords
• Missing channel parameter

20 The maximum MAINVIEW session count has been exceeded. The request is failed. Th
total number of sessions supported PER SS is 150. You might want to retry the request a
inserting an IMFEXEC WAIT().
Chapter 11. Using the MAINVIEW API 221

MAINVIEW CONNECT

 token for

s the
Example

This example shows an EXEC that requests a new channel to be used in subsequent channel requests. The
this channel is placed into the variableJOBCHANNEL.

All other examples in this chapter use the variable named JOBCHANNEL to represent the token that identifie
connected channel.

“IMFEXEC MAINVIEW CONNECT JOBCHANNEL”
222 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW CONTEXT

ilable.
MAINVIEW CONTEXT
Subject: MAINVIEW CONTEXT
This command connects a channel with a specified context or target and optionally waits for it to become ava

The following table describes the parameters.

Command Parameters

MAINVIEW|MV CONTEXT PRODUCT(product name)
TARGET(target identifier)
[SERVER(server name)]
[WAIT(n)]
CHANNEL(channelname)

Parameter Function Notes

PRODUCT Product to which a connection is to be
established.

One of the following products:

MVMVS
MAINVIEW for OS/390

CMF
CMF Monitor

MVCICS
MAINVIEW for CICS

MVVP
MAINVIEW VistaPoint

MVDB2
MAINVIEW for DB2

MVIMS
MAINVIEW for IMS

IPSM
MAINVIEW for IMSPlex

MVMQS
MAINVIEW for MQSeries

TARGET Context or target to which a connection is
to be established.

1- to 8-characters alphanumeric.

SERVER Can be used in target mode to distinguish
between different products that contain
the same target name.

1- to 8-characters alphanumeric. The
default is all servers.
Chapter 11. Using the MAINVIEW API 223

MAINVIEW CONTEXT

. The

e to
Condition codes are listed in the following table.

Example

This example shows an EXEC that requests an immediate connection to product MVMVS with a target of SJSB
connection is to use the previously connected channel whose token is contained in the variableJOBCHANNEL.

WAIT Number of minutes to wait until target
becomes available.

0 - 99999. The default is 0.

If WAIT is specified and a target is not
available, a connection is implicitly
retried every 10 seconds.

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The product or target connection was successfully established. The channel is availabl
retrieve data from the databus.

8 The connection could not be established.

12 The specified channel could not be located.

16 Syntax error detected or invalid channel token supplied.

“IMFEXEC MAINVIEW CONTEXT PRODUCT(MVMVS) TARGET(SJSB) CHANNEL(“JOBCHANNEL”)”
224 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW GETDATA

s.
MAINVIEW GETDATA
Subject: MAINVIEW GETDATA
This command returns some or all of the collected view data.

The following table describes the parameters.

Command Parameters

MAINVIEW|MV GETDATA ARRAY(arrayname)
[START(n)]
[COUNT(n)]
[REFRESH]
CHANNEL(channelname)

Parameter Function Notes

ARRAY Name of the array in which both the data
and the data definition will be returned.

1- to 31-characters alphanumeric.

The specified array must not exist. An
existing array will not be overwritten.

All information about the returned data is
implicitly returned in the array.

START Starting row for the request. 1-99999 numeric. The default is row 1.

To request a subset of the data, specify a
START value and a COUNT value.

COUNT Number of rows of data to retrieve. 1-99999 numeric. The default is all row

To request a subset of the data, specify a
START value and a COUNT value.

REFRESH Specifies that the selector for this data be
restored.

The first request for data from a view in a
given channel requires REFRESH.

In addition:

• Always specify REFRESH on the
first call.

• When using START and COUNT
and you are traversing the result set,
do not specify REFRESH (because
you do not want the result set to
change).

• When you want a new result set to be
obtained (which you always want to
unless you are in the situation above),
always specify RERESH.
Chapter 11. Using the MAINVIEW API 225

MAINVIEW GETDATA

s for

).

ed
Condition codes are listed in the following table.

Example

This example shows an EXEC that retrieves data from a previously specified view in the channel called
DATACHANNEL. For all rows it prints the column with the element name VOL to the AutoOPERATOR journal.

Message option Controls the writing of exception
messages to the journal.

One of the following values:

MSG
Exception messages are written to
the journal.

NOMSG
No exception messages are
written to the journal (default).

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 All of the requested data was successfully retrieved.

4 The specified array could not be built because it already exists.

8 The requested data could not be retrieved. Examine the accompanying error message
details. If NOMSG was specified on CONNECT, display the contents of LINE.xxxx.

This return code may also indicate that the START() keyword specified a value that was
higher than the number of available records (in which case no records can be returned

12 The specified channel could not be found.

16 A syntax error was detected or invalid parameters were supplied.

20 An internal error was received.

24 The number of rows returned exceeds the maximum allowed (or 32767). When this
condition code is issued, 32767 rows of data will be returned. After processing the return
data, the user can redrive the IMFEXEC MV GETDATA usingROW(32768) to obtain any
additional rows. When redriving IMFEXEC MV GETDATA to obtain additional rows, do
not use REFRESH.

"IMFEXEC MAINVIEW GETDATA CHANNEL("DASDCHANNEL") ARRAY(DASDSTAT) START(1) COUNT(20) REFRESH"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:"
do i=1 to arylrows
 "IMFEXEC ARRAY GET DASDSTAT SKIP"
 "IMFEXEC ARRAY MSG "vol
end
226 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW RELEASE

 in the
MAINVIEW RELEASE
Subject: MAINVIEW RELEASE
This command releases all resources associated with an API channel.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows an EXEC that frees all resources associated with the channel whose token is contained
variableJOBCHANNEL. It then discards any MAINVIEW data returned in the array calledJOBDATA.

Command Parameters

MAINVIEW|MV RELEASE CHANNEL(channelname)

Parameter Function Notes

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The specified channel was successfully released.

8 An unspecified error occurred while releasing the channel.

12 The specified channel could not be found.

16 Syntax error detected or invalid parameters supplied.

"IMFEXEC MAINVIEW RELEASE CHANNEL("JOBCHANNEL")"
"IMFEXEC ARRAY DISC JOBDATA NOSAVE"
Chapter 11. Using the MAINVIEW API 227

MAINVIEW TRACE

e of
ated
MAINVIEW TRACE
Subject: MAINVIEW TRACE
This command requests trace information to be written to the BBI Journal. Trace information includes the nam
the command, the return code, and internal completion and reason codes. Use this command with the gener
output whenever contacting BMC Customer Support.

This command is independent of the MSG keyword on the CONNECT statement.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

MAINVIEW|MV TRACE ON | OFF

Parameter Function Notes

ON Turns MAINVIEW API tracing on. The ON or OFF parameter must be
specified with this command.

There is no default value.

OFF Turns MAINVIEW API tracing off. The ON or OFF parameter must be
specified with this command.

There is no default value.

Value Description

0 Tracing was successfully turned ON or OFF

16 Syntax error detected during parsing
228 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW TRACE

e

Example

This example shows an EXEC that requests that all further MAINVIEW API requests be accompanied by trac
information.

“IMFEXEC MAINVIEW TRACE ON”
Chapter 11. Using the MAINVIEW API 229

MAINVIEW VIEW
MAINVIEW VIEW
Subject: MAINVIEW VIEW
This command identifies the view to be used for accessing data.

The following table describes the parameters.

Command Parameters

MAINVIEW|MV VIEW NAME(viewname)
[STEM(stemname)]
[DD(ddname)]
[PARMS(parm1...parm2...parmn)]
CHANNEL(channelname)

Parameter Function Notes

NAME View name that describes the request. 1- to 8-characters alphanumeric.

VIEW is an alias for this parameter.

STEM Stem name of a set of REXX variables
containing the view definitions.

1- to 26-characters alphanumeric.

This parameter may be used to
dynamically specify view contents. A root
for a set of stem variables is specified.
The variable root.0 contains the total
count of stem variables. The actual view
is contained in the variables root.1
through root.x. The syntax of the
specified view is identical to that of the
view normally found in the BBVDEF
dataset.

DD DD name to use to access the view from
the BBI-SS PAS.

1- to 8-characters alphanumeric.

If a DD name is specified, it must be
allocated to the PAS. This can be done
either statically or dynamically.

If a DD name is specified, the view is read
from the DD specified in the calling
address space. BBVDEF is the DD that
contains the distributed views for
accessing AutoOPERATOR data.

If a DD name is not specified, the view is
accessed from the BBI-SS PAS of the
context service point.
230 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW VIEW

 the
he
Condition codes are listed in the following table.

Example

This example shows an EXEC that requests that view JOVER be read and parsed. The view will be read from
target BBI-SS PAS. The connection is to use the previously connected channel whose token is contained in t
variableJOBCHANNEL.

The following example demonstrates how the STEM() parameter may be used to dynamically specify a view:

"

PARMS View parameters as they would be entered
on the command line or in a hyperlink.

1- to 80-characters alphanumeric.

Parameters in parentheses must be
enclosed in quotation marks.

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The view was successfully read and parsed. It is available for subsequent GETDATA
requests.

4 The specified view could not be read.

8 Bad stem variable specification. The specified variables could not be found.

12 The specified channel could not be found.

16 Syntax error detected or invalid parameters supplied.

"IMFEXEC MAINVIEW VIEW NAME(JOVER) CHANNEL("JOBCHANNEL")"

/* REXX */
"ALLOC F(VIEW) DA('BBI26.BAORAE.BBVDEF(PLEX1)') SHR REUSE"
address MVS
"EXECIO * DISKR VIEW (STEM DEFS. FINIS)"
address IMFEXEC
"MV CONNECT MYCHANNEL MSG"
"MV CONTEXT PRODUCT(PLEXMGR) CHANNEL("MYCHANNEL")"
"MV VIEW STEM(DEFS) CHANNEL("MYCHANNEL") VIEW(PLEX1)"
"MV GETDATA CHANNEL("MYCHANNEL") ARRAY(RESULTS) REFRESH"
"MV RELEASE CHANNEL("MYCHANNEL")"
"ARRAY DISC RESULTS NOSAVE
Chapter 11. Using the MAINVIEW API 231

Sample Program
Subject:

The sample program in this section illustrates the use of the MAINVIEW API for a complete application.

/* rexx */
/* */
/***/
/* This EXEC demonstrates the use of the MAINVIEW to AO API. */
/* It assumes that a customized View -JTEST- exists in a dataset allocated */
/* under the BBVDEF DD statement. */
/* The reason for this is that the names of the columns for the generated */
/* AO array are taken from the HEADER1 columns of the actual BBI-3 View. */
/* AO arrays are processed by taking a row of such an array and introducing */
/* the contents of a row into variable names of the same name. Most BBI-3 */
/* do not lend themselves very well to that purpose since they contain */
/* characters (or even multiple words) that do not translate to individual */
/* variable names (they are invalid variable names). */
/* One of the options would have been to make some arbitrary translations. */
/* However, since the user subsequently needs to know the names of such */
/* variables to process them, this would not have been a useful exercise. */
/* It is easy for a user to determine whether invalid variable names exist */
/* by querying the array itself and displaying the column names (which ARE */
/* allowed to be set to names that do not translate to variables). This EXEC */
/* demonstrates this approach amongst other things. */
/* */
/* All failures of the MV API commands rely on the API's cleanup. */
/* */
/* Note: All MV API commands begin with the prefix -IMFEXEC MV- followed */
/* by the desired AOI function. */
/***/

/***/
/* The following command turns on MV tracing, a function that causes */
/* the name of the executed command, the name of the EXEC, return code from */
/* the command as well as API completion and reason code to be automatically */
/* displayed, without having to hand-code it. We may or may not document this*/
/* function to the user. */
/***/

"IMFEXEC MV TRACE ON"

/***/
/* Now we obtain a channel. An AO equivalent (but not identical to) the BBI-3*/
/* token is supposed to be returned in the variable -MYCHANNEL- */
/***/

"IMFEXEC MV CONNECT MYCHANNEL MSG"
"IMFEXEC MSG 'MVAPICMP: "mvapicmp" MVAPIRSN: "mvapirsn"'"
if rc <> 0 then do
 "IMFEXEC MSG 'MV CONNECT failed'"
 exit
end
232 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

/***/
/* Establish a connection to the product -MVMVS-, wait a maximum of one */
/* minute (we automatically retry every minute without the user having to */
/* specify this number) and use the previously acquired channel (as tokenized*/
/* in the variable -MYCHANNEL-). */
/***/

"IMFEXEC MV CONTEXT PRODUCT(MVMVS) WAIT(1) CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG 'MV CONTEXT failed'"
 exit
end

/***/
/* Set the proper View -JTEST- using out channel. */
/* Please note that unlike the underlying assembler API no information about */
/* the element map is returned. This is deferred until the actual GETDATA */
/* and then presented in the array structure. */
/***/

"IMFEXEC MV VIEW VIEW(JTEST) CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG 'MV VIEW failed'"
 exit
end

/***/
/* The data is retrieved. */
/* Any array with the name -RESULTS- is created. The data is refreshed. */
/***/

"IMFEXEC MV GETDATA CHANNEL("MYCHANNEL") ARRAY(RESULTS) REFRESH"
if rc <> 0 then do
 "IMFEXEC MSG 'MV GETDATA failed'"
 exit
end

/***/
/* At this point we want to find out what the names of the columns and their */
/* properties are. */
/* */
/* Note: In the process headers/variable names have been translated to */
/* uppercase. */
/***/

/***/
/* We request all pertinent information about the array -RESULTS- and format.*/
/***/

"IMFEXEC ARRAY INFO RESULTS"
if rc <> 0 then do
 "IMFEXEC MSG 'ARRAY INFO failed'"
 exit
end
Chapter 11. Using the MAINVIEW API 233

/***/
/* This is where we format the information. It has been returned by the */
/* previous command in the variables beginning with the literal -ARY-. */
/***/

"IMFEXEC MSG Number of rows: "arylrows
"IMFEXEC MSG Total storage in use for data: "arystor
"IMFEXEC MSG Number of columns returned: "arycols
"IMFEXEC MSG Detailed data information follows"
"IMFEXEC MSG ---"
"IMFEXEC MSG Width Name"
"IMFEXEC MSG ---"

/***/
/* Here we build one line per column that displays its name and width. */
/* A format of character is assumed. */
/***/

do i=1 to arycols
 "IMFEXEC MSG "left(arycolw.i,6)||arycoln.i
end

col1=arycoln.1

/***/
/* At this point we display the complete contents of the array (the returned */
/* BBI-3 data). This is, of course, not advised for very large amounts of */
/* data. */
/***/

"IMFEXEC MSG Displaying complete ARRAY contents"

/***/
/* Build a header line that properly names each column and is aligned. */
/***/

line=""
do j=1 to arycols
 line=line||left(arycoln.j,arycolw.j+1)
end

"IMFEXEC MSG ---"
"IMFEXEC MSG "line
"IMFEXEC MSG ---"

/***/
/* Sort by jobname column */
/***/

"IMFEXEC ARRAY SORT RESULTS CRITERIA('JOBNAME,,,A')"

/***/
/* Now retrieve each row, build a line from all column contents and show it. */
/***/

do i=1 to arylrows
 "IMFEXEC ARRAY FIND RESULTS row("i")"
 "IMFEXEC ARRAY GET "RESULTS
 line=""
234 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 do j=1 to arycols
 line=line||left(value(‘arycoln’j),arycolw.j)||' '
 end

 "IMFEXEC MSG "line
end

/***/
/* Clean the channel up. */
/***/

"IMFEXEC MV RELEASE CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG 'MV RELEASE failed'"
 exit
end

/***/
/* We also get rid of the results array. By default the array could be picked*/
/* up at a later point by another EXEC and reprocessed. */
/***/

"IMFEXEC ARRAY DISC RESULTS NOSAVE"

/***/
/* If you are testing with this EXEC and for some reason, it does not work */
/* and this last statement is not executed, the next GETDATA will fail, */
/* indicating the array already exists. The quick remedy is to run */
/* the EXEC -DELARY- that will delete all disconnected (KEPT) arrays. */
/***/
Chapter 11. Using the MAINVIEW API 235

236 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

X
eters;

are

ny
Chapter 12. Using the IMFEXEC Statements

IMFEXEC statements provide automation services not available in a TSO command procedure or with a REX
EXEC. The command syntax is the keyword IMFEXEC, followed by the command and any necessary param
for example:

"IMFEXEC command [parameters]"

Valid delimiters for the command are blank characters. IMFEXEC keywordsmust be coded in uppercase.

Command Page Function

ALERT 241 Create an exception message in the ALERTS Application

BKPT 259 Used when testing EXECs with the EXEC Testing facility; allows you
to set a breakpoint anywhere in the EXEC, including in native REXX
code

CHAP 260 Used to change the dispatching priority of the EXEC

CICS 261 Issue a command to a CICS target

CICSTRAN 304 Invoke a transaction in a CICS target

CMD 305 Issue a CICS, IMS, MVS, JES, or BBI command.

CNTL 321 Control listing of EXEC commands in the Journal Log

DOM 323 Delete an outstanding WTO or WTOR

EXIT 324 Terminate the EXEC and set return code

HB 325 Change the number of seconds between heartbeat messages that
sent from a BBI-SS PAS to the ELAN workstation.

IMFC 326 Issue IMF analyzer or monitor command

IMFC SET 331 Issue time-initiated requests from an EXEC

IMSTRAN 333 Initiate an IMS/VS transaction

JES3CMD 336 Issue a JES3 command

JESALLOC 337 Allocate a SYSOUT data set to the given DD name.

JESSUBM 337 Submit a JOB from a DD name or stem variables.

LOGOFF 339 Terminate a previously established OSPI session

LOGON 340 Establish or re-establish an OSPI session between an EXEC and a
VTAM application

MSG 342 Write a message in the BBI-SS PAS Journal Log

NOTIFY 343 Initiate a pager request through the Elan workstation

POST 344 Posts a name for an EXEC that waits on that name

RECEIVE 346 Attempt to receive a screen for an OSPI session
Chapter 12. Using the IMFEXEC Statements237

e

ta

e

RES 347 Issue a SYSPROG service command

SCAN 349 Investigate and retrieve data for an OSPI session

SELECT 352 Invoke an EXEC or user program

SEND 356 Send a message to a TSO or IMS user

SESSINF 358 Write OSPI screen contents and relevant information to the
OSPISNAP DD command

SETTGT 359 Set the target system ID

SHARE 360 Exchanges variables with an AOAnywhere EXEC

STDTIME 362 Instruct Elan to get Greenwich date and time and local date and tim

SUBMIT 363 Submit a job to MVS

TAILOR 364 Enables you to manipulate the contents of members of partitioned da
sets, or REXX stem variables (including a TSO CLIST variation)

TRANSMIT 376 Transmit modified OSPI screen contents to the application

TYPE 378 Enter data into an OSPI session

VCKP 380 Checkpoint PROFILE variables

VDCL 381 Define a variable structure

VDEL 383 Delete variable(s)

VDELL 386 Deletes one or more long variables from one of the AutoOPERATOR
variable pools

VDEQ 388 Issue an MVS dequeue

VENQ 389 Issue an MVS enqueue

VGET 391 Retrieve variable(s) from a pool

VGETL 394 Copies one or more long variables from one of the AutoOPERATOR
pools into the TSO pool

VLST 395 Retrieve names of defined variable names

VLSTL 397 Retrieves a long variable from the specified pool and places it into th
TSO pool

VPUT 399 Store variable in a pool

VPUTL 402 Creates or sets a long variable from a variable in the TSO pool

WAIT 404 Pause for a fixed interval during EXEC processing

WAITLIST 405 Returns information about outstanding WAIT EXECs in variables
LINE1 through LINExx

WTO 407 Write a message to the system console

WTOR 410 Write a message to the system console and wait for a reply

Command Page Function
238 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Coding Conventions

 In the

g
racters,

or one
General Coding Conventions
Subject: Coding Conventions
The following sections briefly describe the coding conventions for using the IMFEXEC command statements.

REXX Coding

Many of the IMFEXEC keywords contain parentheses. To avoid problems with REXX interpreting IMFEXEC
keywords as functions, enclose IMFEXEC statements in double quotation marks:

"IMFEXEC ALERT 'CICSPROD has abended' QUEUE(cics)"

If you need to use a variable in a REXX IMFEXEC statement, it must not be coded within the double quotes.
following example, REXX will substitute a value for the variable CQUEUE:

"IMFEXEC ALERT 'CICSPROD has abended' QUEUE("cqueue")"

In the above example,"IMFEXEC ALERT 'CICSPROD has abended' QUEUE(" is the first part of the statement,
cqueue is the value to be substituted, and")" is the second part of the statement.

Using Quotation Marks

The IMFEXEC commands conform to TSO CLIST coding conventions; for example, all parameters containin
embedded blanks must be enclosed in single quotation marks. To use a single quotation mark in a string of cha
use two single quotation marks.

IMFEXEC MSG 'JOB ''I327802'' has abended' CLIST

"IMFEXEC MSG 'JOB ''I327802'' has abended'" REXX

The resulting message appears in this format:

JOB 'I327802' has abended

Using Variable Names

Variable names are limited to 32 characters in length. The first character of the variable must be alphanumeric
of the following special characters:

• $

• @

• #
Chapter 12. Using the IMFEXEC Statements239

Coding Conventions

EXX

d. The

as

n alias
Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO pool. Refer to “Using Variables in R
EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the comman
table uses the format:

The numbers in this table correspond to:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly
shown.

If parts of the identifier are shown inbold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains a
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

Parameter Function Notes

1 2 3
240 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

TUS
ALERT
Subject: ALERT

This command manages exception messages and message queues that can be displayed by any of the STA
applications and ALERTs applications.

Command Parameters

ALERT alert-key
'alert-text'
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQ|LISTQ|READQ)]
[ALARM(NO|YES)]
[COLOR(RED|PINK|YELLOW|DKBLUE|LTBLUE|GREEN|WHITE)]
[DISPOSE(KEEP|DELETE)]
[ESCALATE(UP|DOWN)]
[ESCEXEC('execname p1 p2 p3 ... pn')]
[EXEC('execname p1 p2 p3 .. pn')]
[HELP(panelname)]
[INTERVAL(nnnn,nnnn,nnnn,nnnn,nnnn,nnnn)]
[PCMD('cmd string')]
[POSITION(position)]
[PRI(CRITICAL|MAJOR|MINOR|WARNING|INFORMATIONAL|CLEARING)]
[PUBLISH(REPLACE|ADD|NO)]
[QUEUE(MAIN|queue name)]
[RETAIN(YES|NO)]
[SYSTEM(YES|NO)]
[TARGET(target name)]
[TEXT('text string')]
[ORIGIN(origin)]
[UDATA('user data')]
[USER(user name)]
Chapter 12. Using the IMFEXEC Statements241

ALERT
The following table describes the parameters.

Parameter Function Notes

alert-key The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for:

FUNCTION(ADD)

FUNCTION(DELETE)

Optional for:

FUNCTION(READQ)

You must specify a unique key for every
ALERT you create. If you create a second
ALERT with the same key as an already
existing ALERT, the second ALERT will
overwrite the first ALERT.

The key cannot contain blanks.

'alert-text' The text of the ALERT message Maximum message length is 255
alphanumeric positions. Required for:

FUNCTION(ADD)

If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced byN/A. A
specification of/N within the alert text
forces a line break. You must include a
blank space before and after using/N.

ALARM Emit audible alarm from the terminal on
the ALERT Detail application

Possible values are:

YES Sound alarm

NO Do not sound alarm

NO is the default.
242 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT
COLOR|COL The color in which the ALERT is
displayed in the ALERT DETAIL and
STATUS applications (overrides default
color associated with ALERT priority)

This parameter does not have any impact
upon the ALERT OVERVIEW application.

When an ALERT’s priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s
color will always default to the following
list of colors:

CRITICAL(RED)

MAJOR(PINK)

MINOR(YELLOW)

WARNING(DKBLUE)

INFORMATIONAL(LTBLUE)

CLEARING(GREEN)

DISPOSE Allows you to specify whether an ALERT
is kept or deleted when it has reached its
final escalation priority level

This keyword must be used with the
INTERVAL keyword.

Possible values are:

KEEP Keep the ALERT in its queue

DELETE Delete the ALERT from the
queue

KEEP is the default.

The variable AMFEDISP returns the value
of this keyword.

ESCALATE Allows you to create ALERTs that change
in priority over a specified interval of time

This keyword must be used with the
INTERVAL keyword.

Possible values are:

UP The ALERT priority is
upgraded from less critical to
more critical.

DOWN The ALERT priority is
downgraded from more critical
to less critical.

UP is the default.

The variable AMFEDIR returns the value
of this keyword.

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements243

ALERT
ESCEXEC Allows you to specify an EXEC (with
parameters) that is scheduled when the
ALERT reaches its final priority level

This keyword must be used with the
INTERVAL keyword.

The variable AMFEEXEC returns the
value of this keyword.

EXEC The name of the ALERT-initiated follow-
up EXEC and its parameters

Maximum length is 256 characters.

Refer to “Parameters Passed to the EXEC”
on page 31 for more information about
parameters passed to ALERT-initiated
EXECs.

FUNCTION|FUN The function to be performed Use the FUNCTION keyword with:

• ADD

• COUNT

• CREATEQ

• DELETE

• DELETEQ

• LISTQ

• READQ

For more information about these
functions and the return codes they
generate, refer to “FUNCTION Names and
IMFCC Return Codes” on page 249.

HELP The name of an extended help panel Maximum length is 8 characters.

This help panel is displayed when you
enter the EXPAND primary command in
the ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.

Create a partitioned dataset (LRECL FB
80) to contain your help members. Modify
your TSCLIST EXEC to insert this dataset
into the PNLLIB concatenation.

Parameter Function Notes
244 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT
INTERVAL Allows you to specify one to six intervals
of time over which the priority of an
ALERT will change

An ALERT’s priority can either increase
(become more critical) or decrease
(become less critical) in priority over the
specified time intervals.

The interval can be specified from 0 to
9999 minutes. At least one interval must be
specified for an ALERT when ESCALATE
is specified.

When the final interval expires:

• The action specified by the DISPOSE
keyword occurs (either the ALERT is
deleted or kept)

• If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled

This keywordmust be used with the
ESCALATE keyword and you must
specify at least one interval for an ALERT
with ESCALATE specified. The variables
AMFEINT1 through AMFEINT6 return
the values associated with this keyword.

In addition, when you want to have an
ALERT change in priority, you must
always code one interval more than the
number of changes. No priority changes
occur in the last interval.

For example, if you want an ALERT to
change from MAJOR to CRITICAL, you
must code two interval periods.

Refer to “Examples of ALERT Escalation”
on page 254 for examples.

ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin
assigned to the ALERT.

The first character cannot be a numeric,
The user-defined origin overrides the
EXEC's IMFSYSID (or the originating job
name for the EXEC).

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements245

ALERT
PCMD A command to be executed if the terminal
operator uses the TRANSFER command
on the ALERT DETAIL panel

Any command that is valid from the
command line is a valid value for this
parameter.

Maximum length is 256 characters.

PCMD is executed as if it were entered on
the command line. You should use the
SYSTEM parameter (described below) or
include the BBI SYSTEM command for
ALERTs that contain PCMD to ensure that
the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.

For example:

PCMD('CICS;EX TRAN;SYSTEM SYSA')

Note that if you have blanks in the PCMD
statement, you must use single quote
marks.

POSITION|POS The order of the ALERT in the queue to
read

Valid values are in the range from 1 to
32,767.

This parameter is used only with the
READQ function.

PRIORITY The priority of the ALERT A valid value is one of the following:

CRITICAL(RED)

MAJOR(PINK)

MINOR(YELLOW)

WARNING(DKBLUE)

INFORMATIONAL(LTBLUE)

CLEARING(GREEN)

Parameter Function Notes
246 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT
PUBLISH Specifies whether an ALERT is published
and how it is published to connected
PATROL Enterprise Manager workstations
that have subscribed to receive ALERTs
through the General Message Exchange
(GME).

Possible values are as follows:

REPLACE An ALERT replace for the
ALERT’s key/queue is sent
to all PATROL Enterprise
Manager workstations that
have subscribed to receive
ALERTs from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL
Enterprise Manager
workstation, it is deleted
before writing the new
ALERT with that key/queue.

ADD An ALERT add is sent to all
workstations that have
subscribed to receive
ALERTs from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL
Enterprise Manager
workstation, it is not deleted
before writing the new
ALERT with that key/queue.

ADD is the default.

NO The ALERT is not written to
the connected PATROL
Enterprise Manager
workstations even if they
have subscribed to receive
ALERTs.

QUEUE|QUE The name of the queue to access or into
which to place the ALERT

Length can be 1 - 8 characters; embedded
blanks are valid.

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements247

ALERT

t

RETAIN Allows you to specify that an ALERT will
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS
IPLs

Note that using this parameter causes the
ALERT to be written to DASD. Therefore,
you should use this parameter only after
careful consideration. A BBI-SS PAS
(warm or cold) start or MVS IPL may
eliminate the exceptional situation that
caused the ALERT in the first place.

Possible values are:

YES Retain this ALERT in disk space
so that it can survive a BBI-SS
PAS warm or cold start.

NO Do not retain this ALERT to
survive BBI-SS PAS warm or cold
starts.

NO is the default.

ALERTs that specify RETAIN(YES)
cannot also specify the INTERVAL
keyword.

In other words, ALERTs that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).

The variable AMFRTAIN returns the value
of this keyword.

SYSTEM Determines whether or not the ALERT
Detail processor switches the current target
to the origin of the ALERT when
processing a TRANSFER (PCMD)

The default is yes.

The target is changed to reflect what was
coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TARGET The target to which the ALERT is sent The ALERT is sent to the subsystem tha
manages the specified target and exists
only in that subsystem.

TEXT A pattern text string This parameter applies to only the READQ
and COUNT functions. Only ALERTs
matching this text string are considered
during these operations.

UDATA Any desired user data string Maximum length is 256 bytes.

The contents of the UDATA field may be
retrieved using the READQ function.

USER The name of a user ID that the ALERT is
addressed to

A 1 - 8 character valid BBI-TS user ID.

Contents of the user field can be used to
tailorALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Refer to
the “ALERT Management Facility”
chapter in theMAINVIEW
AutoOPERATOR Basic Automation Guide
for more information.

Parameter Function Notes
248 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

n
ed in
FUNCTION Keywords

The following table lists in alphabetical order the functions that can be used with the FUNCTION keyword in a
IMFEXEC ALERT EXEC statement. The possible return codes from each function are also listed and describ
the table.

Table 9. FUNCTION Names and IMFCC Return Codes

FUNCTION Description IMFCC
Return
Code
Value

Return Code Description

ADD Adds an ALERT to a queue and
creates a new queue if one does
not already exist

0 Add was successful

8 NODE not found in BBINOD when TARGET
used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

20 ALERT queue is full

COUNT Counts the numbers of ALERTs in
a given queue

Refer to “TSO Variables Returned
from COUNT” on page 252 for
more information.

0 COUNT was successful, count value is
returned in variable AMFCOUNT

8 One of the following conditions is true:

• Queue does not exist

• NODE not found in BBINOD when
TARGET used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

CREATEQ Creates a new ALERT queue 0 Queue create was successful

4 Queue already exists

8 NODE not found in BBINOD when TARGET
used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available
Chapter 12. Using the IMFEXEC Statements249

ALERT
DELETE Deletes an ALERT by the ALERT
key

0 Delete was successful

4 ALERT does not exist

8 One of the following conditions is true:

• Queue does not exist

• NODE not found in BBINOD when
TARGET used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

DELETEQ Deletes an ALERT queue 0 Deleteq was successful

4 Queue does not exist

8 NODE not found in BBINOD when TARGET
used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

LISTQ Lists (in TSO variable IMFNOL)
the number of ALERT queues
present in the target subsystem

Refer to “TSO Variables Returned
from LISTQ” on page 252 for
more information.

0 LISTQ was successful, ALERT queue data is
returned

8 NODE not found in BBINOD when TARGET
used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

READQ Reads an ALERT from the queue
and returns the characteristics of
the ALERT in TSO variables

Refer to “TSO Variables Returned
from the READQ Parameter” on
page 251 for more information.

0 READQ succesful, ALERT data returned

4 Either no match found when using KEY
and/or TEXT criteria or the search ran past
the end of the queue when using the
POSITION keyword.

8 One of the following conditions is true:

• Queue does not exist

• NODE not found in BBINOD when
TARGET used

12 TARGET not found in BBIJNT

16 TARGET AutoOPERATOR not available

Table 9. FUNCTION Names and IMFCC Return Codes (Continued)

FUNCTION Description IMFCC
Return
Code
Value

Return Code Description
250 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT
TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ parameter.

Name Contents Length/Format Example

AMFALARM Alarm value of the alert 1 / Y (YES) or N
(NO)

Y (for YES)

AMFCOLOR Color of ALERT 6 / As specified by
COLOR parameter

RED

AMFEDIR Increase or decrease the priority
of the ALERT when it is escalated

1 / Character (U or D) D

AMFEDISP Keep or delete the ALERT at the
final escalation level

1 / Character (K or D) KEEP

AMFEEXEC Name of EXEC and EXEC
parameters scheduled at final
escalation priority

0-256 / Character ALRTEXEC

AMFEINT1
AMFEINT2
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6

Number (in minutes) from 0 to
9999

4 / Numeric (or null) 15

AMFEXEC EXEC and EXEC parameters
associated with the ALERT

0-256 / Character DBSTART SHIFT2

AMFHELP Extended Alert member name 8 / Character HELPXT2

AMFIDATE Date ALERT was issued 9 /DD-MMM -YY 14-FEB-92

AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24

AMFKEY Key of the ALERT 1-64 / Character DASD01

AMFORGN Origin of ALERT 1-8 / Character CICSPROD

AMFPCMD Primary command specified in
ALERT

0-256 / Character CICS; EX TRAN

AMFPRIOR Priority of ALERT 13 / As specified in
PRIORITY
parameter

INFORMATIONAL

AMFPSYS Value for SYSTEM keyword
(could be either YES or NO)

1 / Character (Y or
null)

Y

AMFPUB Value of the PUBLISH keyword
when an ALERT is created

2-7/ADD,
REPLACE, or NO

ADD

AMFQUEUE Name of queue for ALERT 8 / Character MAIN
Chapter 12. Using the IMFEXEC Statements251

ALERT

1

TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT parameter.

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ parameter.

AMFRTAIN Specifies whether or not to retain
an ALERT across BBI-SS PAS
warm and cold starts

1 / Character (Y or N) Y

AMFSSID System from which ALERT was
issued

8 / Character SYSB

AMFTEXT Text of the ALERT 0-255 / Character This is a test ALERT

AMFTGT Target to which ALERT was
issued

1-8 / Character IMS22P

AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter

AMFUSER Name of the user ID that the
ALERT is addressed to

8 / Character JDB1

Name Contents

AMFCOUNT Number of ALERTs in designated queue

Name Contents

IMFNOL Number of queues present in the target susbsystem. In variables LINE
through LINExxx, it returns the names of all the queues. Limit is 500
queue names.

Name Contents Length/Format Example
252 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

 the

f

ated

l to
XEC
d
nel in

XPAND.
 press
Examples

This section describes examples using the IMFEXEC ALERT command statement. A brief discussion follows
example.

Example 1: Creating a Multi-line ALERT

ALERTs are created as single-line messages unless you use the characters/N in the alert-text parameter. The
characters/N indicate the beginning of a new line of alert-text.

You must use a blank space before and after/N. In the example above, the alert-text parameters includes the use o/N
in two places. The EXEC command in this example produces the following multi-line ALERT:

Example 2: Associating a Help Panel with an ALERT

Use the HELP keyword of the IMFEXEC ALERT command statement to indicate there is a help panel associ
with an ALERT.

Prior to using the HELP keyword in the IMFEXEC ALERT command, you must create and add the help pane
BBPLIB. The HELP keyword specifies the name of the BBPLIB member name. The example shows an IMFE
ALERT command statement that specifies a help panel named H8100. The example is a REXX statement an
therefore uses double quotation marks. The ALERT created by the EXEC appears on the ALERT DETAIL pa
the following format:

The ALERT displays with anh in theIND column. This indicates that there is a help panel associated with the
ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and press the PF key assigned to E
You can also type EXPAND on the command line and then place the cursor anywhere on the ALERT text and
ENTER.

/* REXX */
"IMFEXEC ALERT NETW2",
"'COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO' FUNCTION",
"(ADD) QUEUE(NETWORK)",
"PRIORITY(CRITICAL) COLOR(PINK)"

___ 11:43 CHICAGO COMMUNICATION LINES DOWN:
 - DALLAS
 - CHICAGO

/* REXX */
"IMFEXEC ALERT NETW1",
 "'ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21'",
 "FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100)",
 "COLOR(RED)"

TIME IND ORIGIN _______________________________________
11:44 h CHICAGO ALM0100 8100 COMMUNICATION LINE DOWN:
 -CHI998A21
Chapter 12. Using the IMFEXEC Statements253

ALERT

 so that

e user

e
in the

as the

rease

s of

, and
Example 3: Managing ALERT Queues

You can periodically check the queues for ALERTs that have not been responded to and change their priority
they are noticed.

In the above EXEC, the READQ function is used to set AMFCOUNT equal to the number of ALERTs in the
Network queue. The EXEC then reads each ALERT from the NETWORK queue using POSITION and tests th
data presented in the AMFUDATA variable.

If the criteria is met, the ALERT is deleted from the Network queue using the AMFKEY variable (the key of th
ALERT). Then the ALERT is added to the supervisor's queue using the same key and using the original text
AMFTEXT variable.

Note: This example assumes that the ALERTs were originally created with some meaningful user data (such
date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTs with the ESCALATE parameter so that an ALERT can inc
or decrease in priority over a specified interval(s) of time.

Example 1: Escalating an ALERT from lowest to highest priority: The ALERT in this example will be
upgraded from Informational to Critical priority over five time intervals. The following list describes the propertie
the ALERT:

• The original priority of the ALERT is Informational (PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded gradually over the intervals of 10 minutes, 20 minutes, 30 minutes, 30 minutes
40 minutes (Interval(10,20,30,30,40)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (Dispose(delete)).

/* REXX */
"IMFEXEC VGET THRSHOLD"
"IMFEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK)"
N=AMFCOUNT
DO WHILE N > 0
 "IMFEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION("N")"
 IF IMFCC = 0 THEN DO
 IF AMFUDATA > THRSHOLD THEN DO
 "IMFEXEC ALERT "AMFKEY" FUNCTION(DELETE) QUEUE(NETWORK)"
 "IMFEXEC ALERT "AMFKEY" FUNCTION(ADD) '"AMFTEXT"' QUEUE(SUPERVSE)"
 END
 END
 N = N - 1
END

/* REXX */

"IMFEXEC ALERT key1 'test alert' Priority(info) Escalate(up)",
 "Interval(10,20,30,30,40) Dispose(delete)"
254 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

10

tes
tical.

tes
rity

duled.
When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Informational. After
minutes (), the priority automatically is upgraded from Informational to Warning. The ALERT stays at the
Warning priority for 20 minutes () and is upgraded to Minor. The ALERT stays at Minor priority for 30 minu
() before being upgraded to Major. It stays at Major priority for 30 minutes () before being upgraded to Cri
After remaining at Critical for 40 minutes (), the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals: The ALERT in this example will be
downgraded over two time intervals. The following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be downgraded (Escalate(down)).

• The priority will be downgraded over the intervals of 10 minutes and 20 minutes (Interval(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (Dispose(delete)).

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Minor. After 10 minu
(), the priority automatically is downgraded from Minor to Warning. The ALERT remains at the Warning prio
for 20 minutes () and is deleted at the end of the interval.

The intervals in this example also can be validly coded as follows:

Interval(10,20,)

or

Interval(10,20,,)

or

Interval(10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC: The ALERT in this example
will be upgraded over two time intervals and, at the end of the second interval, an escalation EXEC will be sche
The following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over the intervals of 10 minutes and 20 minutes (Interval(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(Dispose(keep)).

/* REXX */

"IMFEXEC ALERT key2 'test alert' Priority(minor) Escalate(down)",
 "Interval(10,20) Dispose(delete)"
Chapter 12. Using the IMFEXEC Statements255

ALERT

utes
20
T

ou

r a

 is

10
iate
• When the ALERT completes its final interval, an EXEC named e100 with three parameters is scheduled
(Escexec('e100 p1 p2 p3')).

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Minor. After 10 min
(), the priority automatically is upgraded from Minor to Major. The ALERT remains at the Major priority for
minutes () and the EXEC e100 with its three parameters is scheduled at the end of the interval. The ALER
remains at the Major priority until it is manually deleted.

Example 4: Skipping ALERT priorities during ALERT escalation: The ALERT in this example will be
upgraded from Informational to Major while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT: •

• The original priority of the ALERT is Informational(PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over the two intervals of 10 and 20 minutes.

However, to skip ALERT priorities, you must specify an interval of zero minutes for each of the intervals y
want to skip.

In this example, the ALERT will skip two priorities and change from Informational priority directly to Major afte
10-minute interval (Interval(10,0,0,20)).

• When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(Dispose(keep)).

• When the ALERT completes its final interval of 20 minutes, an EXEC named e100 with three parameters
scheduled (Escexec('e100 p1 p2 p3')).

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Informational. After
minutes (), the ALERT’s priority automatically is upgraded from Informational to Major. To skip the intermed
priorities, you must code zero minutes for both Warning and Minor priorities (and).

The ALERT remains at the Major priority for 20 minutes () and the EXEC e100 with its three parameters is
scheduled at the end of the interval. The ALERT remains at the Major priority until it is manually deleted.

/* REXX */

"IMFEXEC ALERT key2 'test alert' Priority(minor) Escalate(up)",
 "Interval(10,20) Dispose(keep) Escexec('e100 p1 p2 p3')"

/* REXX */

"IMFEXEC ALERT key2 'test alert' Priority(info) Escalate(up)",
 "Interval(10,0,0,20) Dispose(keep) Escexec('e100 p1 p2 p3')"
256 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

RT:
The intervals in this example also can be validly coded as:

Interval(10,0,0,20,)

or

Interval(10,0,0,20,,)

Example 5: Showing the elapsed time for an escalated ALERT The ALERT in this example will be
upgraded from Minor to Major in one 10-minute interval. The following list describes the properties of the ALE

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over one interval of 10 minutes (Interval(10)).

• When the ALERT reaches the final priority level, the ALERT should be deleted (Dispose(delete)).

• When the ALERT completes its final interval, an EXEC named e100 with three parameters is scheduled
(Escexec('e100 p1 p2 p3')).

The following example shows the life of the ALERT over time:

/* REXX */

"IMFEXEC ALERT key2 'test alert' Priority(minor) Escalate(up)"
 "Interval(10,20) Dispose(delete) Escexec('e100 p1 p2 p3')"

1:00pm 1:10pm 1:30pm
A Minor ALERT --> The ALERT is upgraded --> The ALERT is deleted
is created to Major Priority and the EXEC e100
 is scheduled
The ALERT stays at this The ALERT stays at this
priority for 10 minutes priority for 20 minutes
Chapter 12. Using the IMFEXEC Statements257

ALERT

iority.

ls are

ager
Examples of Invalid Coding with the Interval Parameter

Some examples of invalid coding are:

Example 1: The interval keyword must contain at least one value.

"IMFEXEC ALERT key4 'test alert' Priority (info) Escalate(up) Interval(,)"

Example 2: You can only specify as many intervals as there are between an originating priority and the end pr

"IMFEXEC ALERT key4 'test alert' Priority(major) Escalate(up)
Interval(10,10,10)"

In this example, there is only one priority that a major ALERT can be upgraded to (Critical) and yet three interva
specified.

Example 3: The interval keyword cannot have null values for intervals.

"IMFEXEC ALERT key4 'test alert' Priority(major) Escalate(up)
Interval(,10,10)"

or

"IMFEXEC ALERT key4 'test alert' Priority(info) Escalate(up)
Interval(,10,,20)"

Example 4: The intervals cannot have negative values.

IMFEXEC ALERT key4 'test alert’ Priority(info) Escalate(up) Interval(,10,-20)

Examples of the PUBLISH Keyword

The following examples demonstrate the usage of the IMFEXEC ALERT PUBLISH keyword.

Example 1: This example creates an ALERT and publishes it to all connected PATROL Enterprise Manager
workstations, deleting any ALERTs already present with the same queue name and key.

IMFEXEC ALERT TESTKEY ‘THIS IS A TEST’ FUNCTION(ADD) PUBLISH(REPLACE) QUEUE(TEST AREA)

Example 2: This example creates an ALERT but does not publish it to any connected PATROL Enterprise Man
workstation.

IMFEXEC ALERT TESTKEY ‘DO NOT PUBLISH ME’ FUNCTION(ADD) PUBLISH(NO) QUEUE(MAIN)
258 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

BKPT

EXEC
BKPT
Subject: BKPT

Use this command anywhere in an EXEC when you want to set a breakpoint. The breakpoint marks where the
will stop while it is being executed by the online EXEC Testing facility. If you execute the EXEC outside of the
online EXEC Testing facility, this command has no effect.

You can use this statement in native REXX code.

This command has no parameters. Use of this command has no effect on the value of variable IMFCC.

Command Parameters

BKPT
Chapter 12. Using the IMFEXEC Statements259

CHAP

r down.

g

CHAP
Subject: CHAP

This command uses a specified numeric parameter to change the dispatching priority of the EXEC either up o

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows IMFEXEC CHAP where the specified value (-10) will be added to the current dispatchin
priority.

Specifying a value of zero (0) returns the current priority.

Command Parameters

CHAP (n)

Parameter Function Notes

n A numerical value that changes the
dispatching priority (either up or down) of
the EXEC. The value you specify is added
to the current dispatching priority.

The numerical value can range from -255
to 255. After the EXEC terminates, the
new dispatching value is returned in the
variable IMFPRIO. The value of
IMFPRIO can be from 0 to 255.

Value Description

16 Syntax error

IMFEXEC CHAP(-10)
260 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS

.

an
ith
ome
es are

S
 should

CICS

ATOR
 a

I-SS

.

 the

stem for
Either
 to the
MT is an
CICS
Subject: CICS

The IMFEXEC CICS command statements use additional commands to manage and control CICS resources

An IMFEXEC CICS command statement consists of the keyword IMFEXEC, the command prefix CICS, and
AutoOPERATOR or MAINVIEW for CICS command with additional parameters. You can specify resources w
generic (*) and positional (+) wild card characters, except when noted. Note that when you use a generic in s
resource names, a maximum of only 200 discrete commands are executed. See each command for which on
affected by this limitation.

CICS requests only indicate success or failure of the scheduling of the service. The AutoOPERATOR for CIC
component within the CICS address space issues additional messages to indicate its success or failure. You
code Rule-initiated EXECs (triggered by journal messages in the format FTxxx) to process the responses from
to ensure successful completion of CICS-dependent commands.

The IMFEXEC CICS commands are supported only on a CICS system that is defined to the local AutoOPER
BBI-SS PAS. If a CICS target is used (refer to IMFEXEC SETTGT command on page 359) that is defined to
remote AutoOPERATOR BBI-SS PAS, you will receive a FT421S message and the service will fail.

To avoid this, use the IMFEXEC SELECT command to schedule an EXEC on a remote AutoOPERATOR BB
PAS and that EXEC can issue the CICS command.

Condition Codes

The following table describes condition codes returned after issuing an IMFEXEC CICS command statement

The IMFCC variable can be tested by commands in the EXEC that follow the IMFEXEC command. However,
IMFCC condition code is different for services that are dependent or services that are independent of CICS.

For CICS-dependent services (where CICS performs the task), the request is routed to the respective CICS sy
processing. If the request is successfully scheduled, IMFCC is set to 0; if the request fails, IMFCC is set to 8.
message FT037I or FT038W is written to the Journal log at this time. The final status of the service is written
Journal log by messages FT401 through FT414. These messages are accompanied with explanatory text. CE
exception; CEMT returns the actual CICS response to the log instead of issuing FTxxxx messages.

Value Meaning

0 Normal completion

4 Warning condition; not necessarily an error

8 Exceptional condition

12 Error condition; did not complete operation. Possible reasons are:

• For independent actions, the region was not available

• For dependent functions, the region was not connected to the BBI-SS PAS

16 Error condition

20 Severe error condition
Chapter 12. Using the IMFEXEC Statements261

CICS

Block
uled,
urnal
se
For CICS-independent services (services that do not require CICS to perform the task), a Service Request
(SRB) is scheduled to the target CICS system to perform the processing. If the request is successfully sched
IMFCC is set to 0; if the request fails, IMFCC is set to 8. Either message FT037I or FT038W is written to the Jo
log at this time. The final status of the service is written to the Journal log by messages FT401 or FT414. The
messages are accompanied with explanatory text.

See Table 10 for details on which services are CICS dependent and which are not.
262 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS
CICS Command Parameters

Services marked as dependent require that BBI-SS PAS to CICS communication is active. Refer to theMAINVIEW
AutoOPERATOR Customization Guide for details.

Table 10. List of IMFEXEC CICS Command Statements

Command Function Dependent Page

ACQUIRE Acquire a VTAM-supported terminal Yes 263

ALLOC Allocate a data set Yes 266

ALTER Alter a CICS task-related value Yes 267

ALTERVS Alter virtual storage No 273

CEMT Issue a CICS extended master terminal command Yes 274

CHAP Change a task's priority Yes 275

CICSKEY Change CICSKEY settings for CIS transactions No 276

CLOSE Close a file Yes 277

CONN Alters the status of IRC/ISC connections Yes 278

DISABLE Disable a resource Mixed1 279

DROP Decrease the use count of a program Yes 281

DUMPDB Prepare a database for dumping Yes 282

ENABLE Enable a resource Mixed1 283

FREE Deallocate a file Yes 285

INSERVE Place a resource in service Yes 286

ISOLATE Change ISOLATE settings for CIS transactions No 287

KILL TASK Terminate a CICS task by task number Mixed1 288

KILL TERM Terminate a CICS task by terminal Yes 290

LOAD Load a program Yes 291

NEWCOPY Load a new version of program Yes 292

OPEN Open a file Yes 293

OUTSERVE Take a resource out of service Yes 294

PURGE Purge a resource Yes 295

QUERY Invoke a MAINVIEW for CICS service No 297

RECOVERDB Prepare a database for recovery Yes 299

RELEASE
TERMINAL

Release a VTAM terminal Yes 300
Chapter 12. Using the IMFEXEC Statements263

CICS
1 Some common options are dependent. Refer to the description of each command for more information.

SPURGE Change the SPURGE value for a CICS transaction No 301

STARTDB Start a database Yes 302

STOPDB Stop a database Yes 303

Table 10. List of IMFEXEC CICS Command Statements (Continued)

Command Function Dependent Page
264 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ACQUIRE
CICS ACQUIRE
Subject: CICS ACQUIRE

This command issues a VTAM request to acquire a terminal.

The following table describes the parameters.

Note: BBI-SS PAS to CICS communication must be active.

Example

The commands in this example acquire terminals following CICS startup without needing to specify
CONNECT=AUTO in the Terminal Control Table (TCT). WAIT was specified to minimize the impact on CICS
processing.

Command Parameters

CICS ACQUIRE TERMINAL
Terminal identifier

Parameter Function Notes

Terminal The terminal to be acquired 1- to 4-alphanumeric.

If you use generics for the terminal ID name,
a maximum of only 200 discrete commands
are executed.

/* REXX */
"IMFEXEC CICS ACQUIRE TERMINAL AB00"
"IMFEXEC CICS ACQUIRE TERMINAL AB01"
"IMFEXEC CICS ACQUIRE TERMINAL AC00"
"IMFEXEC CICS ACQUIRE TERMINAL AC01"
 .
 .
 .
"IMFEXEC WAIT 5
"IMFEXEC CICS ACQUIRE TERMINAL BA11"
"IMFEXEC CICS ACQUIRE TERMINAL BA12"
Chapter 12. Using the IMFEXEC Statements265

CICS ALLOC

one
CICS ALLOC
Subject: CICS ALLOC

This command allocates a file or data set to either the CICS region or to the BBI-SS PAS. The allocation is d
shared (DISP=SHR).

The following table describes the parameters.

Example

This example command allocates a data set that has previously been freed for batch processing.

Command Parameters

CICS ALLOC Filename
[TO]
Dsname
[LOCAL]

Parameter Function Notes

Filename The DD Name of the file to allocate Length can be 1- to 8 alphanumeric.

An FCT entry is not needed.

TO Readability token

DSName Name of data set to allocate 1-44 characters alphanumeric.

LOCAL Forces allocation to the BBI-SS PAS
instead of the CICS region

/* REXX */
"IMFEXEC CICS ALLOC MASTER TO USER.VSAM.MASTER"
266 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER

s.
CICS ALTER
Subject: CICS ALTER

This command allows changing of the values of the CICS class maximum settings and statistics for each clas

Note: For CICS/ESA 4 and above, BBI-SS PAS to CICS communication must be active

The following table describes the parameters.

Command Parameters

CICS ALTER MAXTASK | ICV | ICVR | CLASSn | TCLASS | SYSTEM | DUMPDS | TCPIPSERVICE |
JVMPOOL

Parameter Function Notes

MAXTASK Specifies the maximum number of
tasks, active and suspended, allowed in
the CICS address space concurrently.

Example:

"IMFEXEC CICS ALTER MAXTASK
35"
/* Allow only 35 tasks to
run */

Values can be 1 - 999.

ICV Specifies the region exit interval value
in milliseconds.

Example:

"IMFEXEC CICS ALTER ICV 1000"
/*Come back from OS after 1
second*/

Values can be 100 - 3600000.

ICVR Specifies the runaway interval in
milliseconds.

Example:

"IMFEXEC CICS ALTER ICVR 5000"
/* If it runs longer than 5
seconds, it is looping */

Values can be 500 - 2700000.

CLASS1 - CLASS10 Specifies the largest number of tasks in
this class that can be active
concurrently.

Example:

"IMFEXEC CICS ALTER CLASS1 10"
/* Allow only 10 tasks in this
class */

Values can be 1 - 999.
Chapter 12. Using the IMFEXEC Statements267

CICS ALTER
TCLASS class

MAXACTIVE value
| PURGETHRESH
value

Reset the maximum number of tasks or
the purge threshold for a transaction
class.

Example 1:

"IMFEXEC CICS ALTER TCLASS
DFHTCL05 MAXACTIVE 200"
/* Only allow 200 tasks to
run */

Example 2:

"IMFEXEC CICS ALTER TCLASS
DFHTCL05 PURGETHRESH 1000"
/* Only allow 1000 tasks to
queue up */

Possible attributes and values are

Class
Any valid 1 - 8 character transaction
class name. The word class is not a
keyword. It indicates where the
positional parameter class name is
specified.

MAXACTIVE Value
Valid values can be 0 - 999. Cannot
be specified with PURGETHRESH.
After the value for class, specify
MAXACTIVE followed by a value.

PURGETHRESH Value
Valid values can be 0 - 1000000.
Cannot be specified with
MAXACTIVE. After the value for
class, specify PURGETHRESH
followed by a value. Only one
attribute can be changed per
execution of the statement. You
cannot change both the
MAXACTIVE and the
PURGETHRESH attribute with the
same statement.

ALTER TCLASS is only available for CTS
1.3 and later.

Parameter Function Notes
268 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER
SYSTEM attribute
value

Possible attributes
are

AKP
DSALIMIT
DTRPROGRAM
DUMPING
EDSALIMIT
FORCEQR
PROGAUTOINST
PROGAUTOCTLG
PROGAUTOEXIT
PRTYAGING
RUNAWAY
SCANDELAY
TIME

Issues commands to change certain
CICS system attributes. Attribute
specifies the system attribute and value
is the desired value.

Example 1:

 "IMFEXEC CICS ALTER SYSTEM
DUMPING NO"
 /* This command disallows
dumps */

Example 2:

"IMFEXEC CICS ALTER SYSTEM
DSALIMIT 8388608"
 /* Set DSA limit to 8
megabytes*/

Example 3:

"IMFEXEC CICS ALTER SYSTEM
EDSALIMIT 500M"
 /* Set EDSA limit to 500
megabytes */

Example 4:

"IMFEXEC CICS ALTER SYSTEM
EDSALIMIT 1G"
 /* Set EDSA limit to 1
gigabytes */

Possible attributes and values are

AKP
Valid range is 200 - 65535. Specifies
the activity keypoint trigger value,
which is the number of write
requests to the CICS system log
stream output buffer between the
keypoints. The value 0 is also valid
and specifying it turns off keypoints.

DSALIMIT
Valid values are 2MB - 16MB.
Specifies the maximum amount of
dynamic storage area CICS can
allocate below the 16 megabyte line.
Values can be specified in bytes,
kbytes or mbytes by appending K or
M to the end of the value, or by
leaving a blank for bytes.

DTRPROGRAM
Specifies the Dynamic Routing
program name.

DUMPING
Valid values are YES and NO.
Indicates whether CICS system
dumps can be taken.

EDSALIMIT
Valid values are 10M - 2G. Specifies
the maximum amount of dynamic
storage area CICS can allocate
above the 16 megabyte line. Values
can be specified in bytes, kbytes,
mbytes or gbytes by appending K,
M or G to the end of the value, or by
leaving blank for bytes.

FORCEQR
Valid values are FORCE and
NOFORCE. Specifies whether you
want CICS to force all user
application programs specified as
CONCURRENCY(THREAD-
SAFE) to run under the CICS QR
TCB, as if they were specified as
CONCURRENCY(QUASIRENT)
programs. SYSTEM FORCEQR is
available only for CTS 1.3 and later.

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements269

CICS ALTER
SYSTEM attribute
value

(Continued)

See theCICS System Programming
Reference Guide for more information.

PROGAUTOINST
Valid values are ACTIVE and
INACTIVE. Specifies whether
autoinstall for programs is to be active or
inactive.

PROGAUTOCTLG
Valid values are NONE, ALL or
MODIFY. Specifies which autoinstalled
program definitions are to be cataloged
and when. Definitions are to be cataloged
only when modified.

PROGAUTOEXIT
Specifies the name of the user-provided
program to be called by the CICS
program autoinstall code to provide a
model definition.

PRTYAGING
Valid values are between 0 and 65535 (in
milliseconds). Specifies the rate at which
CICS is to increase the priority of a task
waiting for dispatch.

RUNAWAY
Valid values are between 500 and
2700000 (in milleseconds). Specifies the
default for runaway task time.

SCANDELAY
Valid values are 0 to 5000 (in
milliseconds). Specifies the maximum
number of milliseconds between a user
task making a terminal I/O request and
CICS dispatching the terminal control
task to process it.

TIME
Valid values are in the range 100 -
3600000. Specifies the maximum
interval in milliseconds for which CICS
gives control to the operating system if
no tasks are ready for dispatch. Only one
attribute can be changed per execution of
the statement. You will need to code
multiple statements in order to change
multiple attributes.

Parameter Function Notes
270 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER
DUMPDS attribute
value

Possible attributes
are

DATASET
INITIALDDS
OPENSTATUS
SWITCHSTATUS

Changes the attributes of the CICS
dump data set.

Example 1:

"IMFEXEC CICS ALTER DUMPDS
OPENSTATUS OPEN"
/* This command opens the
active dump dataset */

Example 2:

"IMFEXEC CICS ALTER DUMPDS
INITIALDDS AUTO"
/* Next warm start use
whichever dataset not used
last */

Possible attributes and values are

DATASET
Valid values are A and B. Specifies
current dump data set.

INITIALDDS
Specifies which dump data set is to be
active first on subsequent warm or
emergency restarts. Valid values are A, B
and AUTO. AUTO indicates to use the
data set that was not active when CICS
last terminated (normally or abnormally).

OPENSTATUS
Valid values are OPEN and CLOSE.
Specifies actions to be taken on the
transaction dump data sets.

SWITCHSTATUS
Valid values are NO and NEXT.
Specifies whether CICS is to switch
active data sets automatically the next
time the current dump data set fills up.

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements271

CICS ALTER
Example

Examples are located in the Parameters table with the description of each keyword.

TCPIPSERVICE
service attribute
value

Possible attributes
are

BACKLOG
DNSSTATUS
STATUS
URM

Modify the status of a service using
CICS internal TCP/IP support.

Example 1:

 "IMFEXEC CICS ALTER
TCPIPSERVICE PRINTER STATUS
CLOSE"
/* Close printer service */

Possible attributes and values are

BACKLOG
Changes the maximum number of
requests that can be queued in TCP/IP
waiting to be processed by the service.
Specify service name followed by
BACKLOG followed by value.

DNSSTATUS
Valid values are REGISTERED and
DEREGISTERED. Changes the Domain
Name System (DNS)/Workload Manager
(WLM) registration status of this service.
Specify service name followed by
DNSSTATUS followed by value.

STATUS
Valid values are OPEN, CLOSE and
IMMCLOSE. Changes the status of the
service. Specify service name followed
by STATUS followed by value.

URM
Specifies the 8-character name of the
program to be used as the Service
User-replaceable module. Specify
service name followed by URM followed
by value.

ALTER TCPIPSERVICE is only available for
CTS 1.3 and later.

JVMPOOL attribute
value

Possible attributes
are

STATUS
TERMINATE

Enable or disable the JVM pool, or
terminate the pool altogether.

Example 1:

 "IMFEXEC CICS ALTER JVMPOOL
STATUS DISABLED"
 /* No new requests are
allowed */

Example 2:

"IMFEXEC CICS ALTER JVMPOOL
TERMINATE PURGE"
/*Purge all the tasks */

Possible attributes and values are

STATUS
Valid values are ENABLED and
DISABLED. Specifies whether new Java
requests can be accepted and serviced by
the JVM pool.

TERMINATE
Valid values are PHASEOUT, PURGE
and FORCEPUR. Specifies that the JVM
pool is to be terminated.

ALTER JVMPOOL is only available for CTS
2.1 and later.

Parameter Function Notes
272 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTERVS
CICS ALTERVS
Subject: CICS ALTERVS

This command allows changing of the contents of memory located at the specified virtual address.

The following table describes the parameters.

Example

This example command zeroes out a field known to be in a specific location in a control block or program.

Command Parameters

CICS ALTERVS Address
[FROM]
Value1
[TO]
Value2

Parameter Function Notes

Address A virtual storage address 8 hexadecimal digits (4 bytes).

FROM Readability token Used primarily for documentation
purposes; however, it must be different
from the TO value to cause the storage to
be altered.

Value1 Current memory contents at the designated
virtual storage address

8 hexadecimal digits.

TO Readability token

Value2 Replaces the current contents of memory at
the specified virtual storage address with a
new hexadecimal value

8 hexadecimal digits (4 bytes).

/* REXX */
"IMFEXEC CICS ALTERVS 00031F14 FROM 01080000 TO 00000000"
Chapter 12. Using the IMFEXEC Statements273

CICS CEMT

as

ed
CICS CEMT
Subject: CICS CEMT

This command issues a CICS CEMT request.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command switches dump data sets.

. or

Command Parameters

CICS CEMT | CEMTQ Mttran

The maximum length of parameters (including blanks) and subcommands (such
SET and INQUIRE) is 72 characters.

By default, the output from the CEMT command is written to the BBI journal. If
you many CEMT commands consecutively or over time, it can produce a great
deal of unwanted data in the BBI journal. To avoid this overload of information,
you can use the CEMTQ command instead of CEMT. All parameters are specifi
exactly as with CEMT. The difference is that the output will not be written to the
BBI journal.

Parameter Function Notes

Mttran Is a CICS master terminal command
initiated from an EXEC as a CEMT request

The command can be issued using the
MVS command facility (CMD) if the
console used is defined to CICS in the
CICS Terminal Control Table.

/* REXX */
"IMFEXEC CICS CEMT SET DUMP SWI"

 /* REXX */
 "IMFEXEC CICS CEMTQ SET DUMP SWI"
274 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS CHAP
CICS CHAP
Subject: CICS CHAP

This command causes a dynamic change to the priority of an active task.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command assigns a dispatching priority of 232 to task 8756.

Command Parameters

CICS CHAP Taskno
Priority

Parameter Function Notes

Taskno Number of the currently active task to
modify

Decimal numeric value in CICS allowable
range.

This number can be obtained by using the
IMFEXEC QUERY command (this
requires MAINVIEW for CICS to be
installed). Looping transactions running at
a dispatching priority of 255 sometimes
cannot be changed.

New priority The priority to assign to this task Numeric value in the range 0-255.

/* REXX */
"IMFEXEC CICS CHAP 8756 232"
Chapter 12. Using the IMFEXEC Statements275

CICS CICSKEY
CICS CICSKEY
Subject: CICS CICSKEY

This command changes CICSKEY settings for CICS transactions.

The following table describes the parameters.

Example

This section contains examples using the IMFEXEC CICS CICSKEY command statement. A brief discussion
follows each example.

Example 1

This example command sets the TASKDATAKEY of the CICS CEMT to CICS.

Example 2

This example command sets the TASKDATAKEY of the CICS CEMT to USER.

Command Parameters

CICS CICSKEY Tran ID .br;[YES|NO]

Parameter Function Notes

Tran ID The name of a CICS transaction

[YES|NO] Can be set to YES or NO

"IMFEXEC CICS CICSKEY CEMT YES"

"IMFEXEC CICS CICSKEY CEMT NO"
276 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS CLOSE

n

CICS CLOSE
Subject: CICS CLOSE

This command closes one file in the CICS region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command closes a CICS file.

Command Parameters

CICS CLOSE Filename

Parameter Function Notes

Filename The filename of the file to close 1- to 8-alphanumeric file name defined i
the CICS File Control Table (FCT).

/* REXX */
"IMFEXEC CICS CLOSE P001"
Chapter 12. Using the IMFEXEC Statements277

CICS CONN
CICS CONN
Subject: CICS CONN

This command alters the status of IRC/ISC connections.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command puts a connection in service.

Command Parameters

CICS CONN SYSID

IN
OUT
ACQ
REL
NOTPEND
PURGE

Parameter Function Notes

SYSID Is the CICS SYSID for the MRO/ISC
connection

Values can be:

INservice
Puts the connection into service

OUTservice
Takes the connection out of service

ACQuire
Acquires a connection

RELease
Releases a connection

NOTPEND
Makes a connection not pending

PURGE
Purges a connection

"IMFEXEC CICS CONN SYSID IN"
278 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS DISABLE
CICS DISABLE
Subject: CICS DISABLE

This command command makes a resource unavailable to applications, except for those currently using it.

The following table describes the parameters.

Command Parameters

CICS DISABLE FILE|TRAN|PROGRAM|DEST
Identifier

Parameter Function Notes

Type The type of resource to affect Values are:

FILE
A file

Note:BBI-SS PAS to CICS
communication must be active.

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

Identifier The resource ID for each type Values are:

file id
Identifier is a 1- to 8-alphanumeric file
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

dest id
Identifier is a 1- to 4-character queue
name defined in the Destination
Control Table (DCT)
Chapter 12. Using the IMFEXEC Statements279

CICS DISABLE
Example

This example command disables a CICS transaction.

/* REXX */
"IMFEXEC CICS DISABLE TRAN ABRW"
280 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS DROP
CICS DROP
Subject: CICS DROP

This command decreases the use-count of a program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command decreases the use-count of the program DSPFILE.

Command Parameters

CICS DROP Program name

Parameter Function Notes

Identifier A CICS program identifier 1- to 8-character ID of the program
affected. After a program use-count
reaches 0, it is eligible to be removed by
CICS program compression. You should be
careful to avoid dropping, and potentially
removing, programs that are actually in use
by executing transactions.

/* REXX */
"IMFEXEC CICS DROP DSPFILE"
Chapter 12. Using the IMFEXEC Statements281

CICS DUMPDB

er region.
CICS DUMPDB
Subject: CICS DUMPDB

This command prepares a database for dumping by preventing updates so a backup job can be run in anoth

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command prepares the database STD2XCP for batch updates.

Command Parameters

CICS DUMPDB Database name

Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.

/* REXX */
"IMFEXEC CICS DUMPDB STDCX2P"
282 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ENABLE
CICS ENABLE
Subject: CICS ENABLE

This command makes a resource available for use.

The following table describes the parameters.

Command Parameters

CICS ENABLE FILE|TRAN|PROGRAM|DEST
Identifier

Parameter Function Notes

Type The type of resource to affect Values are:

FILE
A file

Note:BBI-SS PAS to CICS
communication must be active.

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

Identifier The resource ID for each type Values are:

file id
Identifier is a 1- to 8-alphanumeric file
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

dest id
Identifier is a 1- to 4-character queue
name defined in the Destination
Chapter 12. Using the IMFEXEC Statements283

CICS ENABLE
Example

This example command enables the CICS transaction ABRW.

/* REXX */
"IMFEXEC CICS ENABLE TRAN ABRW"
284 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS FREE
CICS FREE
Subject: CICS FREE

This command deallocates a file from the CICS region or BBI-SS PAS.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

These example commands close and deallocate a data set.

Command Parameters

CICS FREE Filename
[LOCAL]

Parameter Function Notes

Filename The DD Name of the file to deallocate 1- to 8 alphanumeric.

DISABLE FILE and CLOSE commands
for the data set must be issued before
FREE. The name does not need to be one
that is specified in the CICS FCT, but the
file must be closed to be freed.

LOCAL Forces deallocation from the BBI-SS PAS
instead of the CICS region

/* REXX */
"IMFEXEC CICS CLOSE MASTER"
"IMFEXEC CICS FREE MASTER"
Chapter 12. Using the IMFEXEC Statements285

CICS INSERVE
CICS INSERVE
Subject: CICS INSERVE

This command puts a terminal, line, or control unit in service.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command makes all terminals with IDs that begin with SC available for use.

Command Parameters

CICS INSERVE TERMINAL|LINE|CONTROLLER
Identifier

Parameter Function Notes

Type The type of resource to modify One of the following:

TERMINAL

LINE

CONTROLLER

If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

Identifier ID of the terminal, line, or controller 1-4 characters.

The ID of a line or a controller cannot be
specified as a generic.

/* REXX */
"IMFEXEC CICS INSERVE TERMINAL SC*"
286 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ISOLATE

llows
CICS ISOLATE
Subject: CICS ISOLATE

This command changes ISOLATE settings for CICS transactions.

The following table describes the parameters.

Example

This section contains examples using the IMFEXEC CICS ISOLATE command statement. A brief discussion fo
each example.

Example 1

This example command sets CICS CEMT to ISOLATE(YES).

Example 2

This example command sets CICS CEMT to ISOLATE(no).

Command Parameters

CICS ISOLATE Tran ID
[YES|NO]

Parameter Function Notes

Tran ID The name of a CICS transaction

[YES|NO] Can be set to YES or NO

"IMFEXEC CICS ISOLATE CEMT YES"

"IMFEXEC CICS ISOLATE CEMT NO"
Chapter 12. Using the IMFEXEC Statements287

CICS KILL

 is

ask is

e table

o

CICS KILL
Subject: CICS KILL

This command terminates a CICS task identified by a CICS task number or identified by the CICS terminal it
attached to.

Note: When this command is used on a task running in a CICS/ESA region, the task's system purgeable m
turned on (SPURGE set to YES) prior to execution of the command.

The table describing the IMFEXEC CICS KILL TASK command statement parameters is on page 288 and th
describing the IMFEXEC CICS KILL TERM command statement parameters is on page 290.

CICS KILL TASK

The following table describes the parameters for the IMFEXEC CICS KILL TASK command statement.

Command Parameters

CICS KILL TASK
Task number
[WITH DUMP]
[FORCE|PURGE|FORCEPURGE]

TERMINAL
Terminal ID
[PURGE|FORCEPURGE]

Parameter Function Notes

Task number The number of the task affected A CICS-assigned task number from 1 t
99999.
288 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS KILL
WITH Readability token The WITH parameter works only with
DUMP.

Type Type of abnormal termination desired One of the following:

DUMP
If the integrity of the CICS region can
be maintained, the task is abnormally
ended with a dump.

FORCE
Forces a looping task to abend with a
dump, regardless of integrity
exposure. Expect to use this service
more than once on a multiprocessor
for a task in a loop. CAUTION: This
can cause the CICS region to abend.

PURGE
Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of
the CICS supplied transaction CEMT
using the FORCE parameter.

Note: BBI-SS PAS to CICS
communicationmustbe active
to use the PURGE and
FORCEPURGE parameters.

If only the task number is specified, the
task is abnormally terminated if the
integrity if the CICS region can be
maintained. A dump is produced.

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements289

CICS KILL
CICS KILL TERM

The following table describes the parameters for the IMFEXEC CICS KILL TERM command statement.

Note: BBI-SS PAS to CICS communicationmust be active.

Examples

This section contains an example using the IMFEXEC CICS KILL TASK and IMFEXEC CICS KILL TERM
command statements. A brief discussion follows the example.

Example 1 - IMFEXEC CICS KILL TASK

When coded within an EXEC driven off the message FT041S, this command kills a task when the message:

FT04IS TRAN xxx TASK yyyy USING zzzK BYTES

is logged to the online Journal. The task ID is contained in the P004 variable.

Example 2 - IMFEXEC CICS KILL TERM

This example terminates the CICS task attached to terminal BSA4.

Parameter Function Notes

Terminal ID The terminal that the task is attached to

Type Type of abnormal termination desired One of the following:

PURGE
Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of
the CICS supplied transaction CEMT
using the FORCE parameter.

/* REXX */
"IMFEXEC CICS KILL TASK 0004"

/* REXX */
"IMFEXEC CICS KILL TERM BSA4"
290 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS LOAD
CICS LOAD
Subject: CICS LOAD

This command increases the use-count of a program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command increases the use count of the program named PROGX470.

Command Parameters

CICS LOAD Program name

Parameter Function Notes

Identifier The name of the affected program 1- to 8-character alphanumeric. If a
program is not currently resident in CICS
storage, it will be loaded. Unless the use
count is specifically decreased with the
DROP transaction or through CICS
services, the program stays permanently
loaded until CICS terminates.

/* REXX */
"IMFEXEC CICS LOAD PROGX470"
Chapter 12. Using the IMFEXEC Statements291

CICS NEWCOPY

r a newly
CICS NEWCOPY
Subject: CICS NEWCOPY

This command marks the program name in the PPT nonresident and refreshes its disk address to prepare fo
link-edited version or restoration of that program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command refreshes the CICS copy of a program named PGM1.

Command Parameters

CICS NEWCOPY Program name

Parameter Function Notes

Program The program to refresh 1- to 8 alphanumeric.

/* REXX */
"IMFEXEC CICS NEWCOPY PGM1"
292 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS OPEN

e.
CICS OPEN
Subject: CICS OPEN

This command opens a file in the CICS region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

These example commands allocate and open a data set.

Command Parameters

CICS OPEN File name

Parameter Function Notes

Filename The name of the FCT entry to open 1- to 8 characters alphanumeric file nam

/* REXX */
"IMFEXEC CICS ALLOC MAIN1 TO USERV.MAIN1.CLUSTER"
"IMFEXEC CICS OPEN MAIN1"
Chapter 12. Using the IMFEXEC Statements293

CICS OUTSERVE
CICS OUTSERVE
Subject: CICS OUTSERVE

This command takes a terminal, line, or control unit out of service.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command keeps all terminals with IDs that begin with T and end with S from being used.

Command Parameters

CICS OUTSERVE TERMINAL|LINE|CONTROLLER
Identifier

Parameter Function Notes

Type The type of resource to modify One of the following:

TERMINAL

LINE

CONTROLLER

If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

Identifier ID of the terminal, line, or controller 1-4 characters.

The ID of a line or a controller cannot be
specified as a generic.

/* REXX */
"IMFEXEC CICS OUTSERVE TERMINAL T++S"
294 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS PURGE

r

r

CICS PURGE
Subject: CICS PURGE

This command terminates a CICS resource

BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Command Parameters

CICS PURGE TSUT|ICE|DEST|AID

Parameter Function Notes

TSUT value or
value HEX

Purges a temporary storage unit from the
CICS system.

Can be up to 16 characters or a 32 characte
representation of a 16-byte hexadecimal
number.

The maximum depends on the CICS
release.

Example 1:

"IMFEXEC CICS PURGE TSUT
PAYROLL1"

Example 2:

"IMFEXEC CICS PURGE TSUT 1C3A773B
HEX"
/* Purge the binary TSUT with
binary ID 1C3A773B */

ICE value Purges an interval control element from the
CICS system.

Can be up to 8 characters or a 16 characte
representation of an 8-byte hexadecimal
number.

Example 1:

"IMFEXEC CICS PURGE ICE DELAY"

Example 2:

"IMFEXEC CICS PURGE ICE
3C0000FF00001000”
/* Purge the binary ICE with
binary ID 3C0000FF00001000 */
Chapter 12. Using the IMFEXEC Statements295

CICS PURGE

.

r

Example

Examples are located in the Parameters table with the description of each keyword.

DEST value Deletes the CICS Transient Data queue. Up to 4 character queue name allowed

Example:
"IMFEXEC CICS PURGE DEST DEVL" /*
Delete the development queue */

AID value termed Purges an Automatic Initiation Descriptor
from the CICS system.

Can be up to 8 characters or a 16 characte
representation of an 8-byte hexadecimal
number.

Example:

"IMFEXEC CICS PURGE AID
3C0000FF00001000 L287 TRN1"
/* Purge the AID for terminal
L287 transaction TRN1 */

Parameter Function Notes
296 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS QUERY

,

inal is
CAL

VGET

, but
two lines
ich are

L

ader line

header
isplay
CICS QUERY
Subject: CICS QUERY

This command invokes MAINVIEW for CICS interactive services, such as SUMMARY, MONITOR, PROBLEM
SUBPOOL, and so on.

QUERY is executed on behalf of the target CICS system. When QUERY is used, data normally sent to the term
written into variables that the EXEC can analyze. The output returned from the command is written into the LO
variables LINE1 through LINExx, which correspond to the lines of the screen image.

The variable IMFNOL contains the number of lines of output. These variables need to be retrieved using the
statement before they can be used.

The output is similar to output produced through the same service of a MAINVIEW for CICS terminal session
this output does not have screen attributes in the variables. The data returned also does not contain the first
displayed when invoking the service under the BBI-TS. The data returned does not contain the header lines wh
displayed when invoking the service under the BBI-TS unless they contain variable data.

You might need to experiment with the correct offsets to use when substringing particular items. Changes to
MAINVIEW for CICS display formats might affect EXECs that process this data.

For most MAINVIEW for CICS services, two header lines are omitted before the data is returned in the LOCA
variables. There are some exceptions to this standard.

One exception is those services that contain variable data in one of the header lines. For these services, the he
containing the variable data and all subsequent lines are returned.

Another exception is those services which contain either one or two blank header lines. For these services, the
lines are not returned at all. However, all blanks that might be interspersed within the detail lines of a specific d
are passed to the EXEC. You must accommodate for these lines in the EXEC.

The following table describes the parameters.

Command Parameters

CICS QUERY Command

Parameter Function Notes

Command A MAINVIEW for CICS service request,
referred to in format descriptions in the
MAINVIEW for CICS PERFORMANCE
MANAGER User Guide

 No quotes are required around this
operand.
Chapter 12. Using the IMFEXEC Statements297

CICS QUERY

llows

used to
ge) is

hen
n
ins
Example

This section contains an example using the IMFEXEC CICS QUERY command statement. A brief discussion fo
the example.

The above example command shows an EXEC that interprets the DSA utilization percentage. This could be
influence decisions made within an EXEC that is invoked when message FT041S (task using excessive stora
issued.

To page through several MAINVIEW for CICS displays, supply a parameter to the second and subsequent
information of a command. This parameter should specify the last item on the previous page; for example, w
using the TRAN display, invoke the TRAN display on the second iteration with the name of the last transactio
displayed on the panel you have already processed (IMFEXEC QUERY TRAN xxxx). MAINVIEW for CICS beg
the next display with that transaction.

/* REXX */
"IMFEXEC CICS QUERY SUBPOOL"
/* DSA PERCENTAGE IS NOW IN MSG #2, COLUMNS 14-16 */
"IMFEXEC VGET LINE2 LOCAL"
DSAPERC = SUBSTR(LINE2,14,2)
IF DSAPERC < 50 THEN CALL LOKAY
298 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS RECOVERDB

e run in
CICS RECOVERDB
Subject: CICS RECOVERDB

This command prepares a database for recovery by preventing reads and updates so a recovery utility can b
another region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command inhibits online updates to the database STDIDBP.

Command Parameters

CICS RECOVERDB Database name

Parameter Function Notes

Database The name of the database identified in the
Data Management Block Directory (DMB)

1- to 8-characters alphanumeric.

/* REXX */
"IMFEXEC CICS RECOVERDB STDIDBP"
Chapter 12. Using the IMFEXEC Statements299

CICS RELEASE
CICS RELEASE
Subject: CICS RELEASE

This command releases VTAM terminals from CICS.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command releases all terminals beginning with LM.

Command Parameters

CICS RELEASE TERMINAL
Terminal ID

Parameter Function Notes

Terminal identifier ID of the terminal to be released 1- to 4-characters alphanumeric.

If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

/* REXX */
"IMFEXEC CICS RELEASE TERMINAL LM*"
300 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS SPURGE

tion is
om
or the

.

CICS SPURGE
Subject: CICS SPURGE

This command dynamically changes the SPURGE value for a CICS transaction.

Note: For CICS/ESA, the stall purge mechanism no longer exists. SPURGE now indicates whether a transac
system purgeable. If the transaction definition specifies SPURGE=NO, the transaction is protected fr
deadlock timeout purge and purge requests (but not from force purge requests) issued by applications
master terminal.

The following table describes the parameters.

Example

This example command sets the SPURGE flag for transaction RT17 to on.

Command Parameters

CICS SPURGE Tranid
[YES|NO]

Parameter Function Notes

Tranid Transaction to affect

Status YES/NO Specifying YES turns the SPURGE flag on

Specifying NO turns the SPURGE flag off.

/* REXX */
"IMFEXEC CICS SPURGE RT17 YES"
Chapter 12. Using the IMFEXEC Statements301

CICS STARTDB
CICS STARTDB
Subject: CICS STARTDB

This command activates a database, making it available for processing.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command activates a database with the name STDCDBP.

Command Parameters

CICS STARTDB Database name

Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.

/* REXX */
"IMFEXEC CICS STARTDB STDCDBP"
302 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS STOPDB
CICS STOPDB
Subject: CICS STOPDB

This command deactivates a database, making it unavailable for processing.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example deactivates the database STDCX2P.

Command Parameters

CICS STOPDB Database name

Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.

/* REXX */
"IMFEXEC CICS STOPDB STDCX2P"
Chapter 12. Using the IMFEXEC Statements303

CICSTRAN
CICSTRAN
Subject: CICSTRAN

This command invokes a CICS transaction.

The following table describes the parameters.

Example

This example command deactivates BBI-SS PAS to CICS communications.

Command Parameters

CICSTRAN Tran
['Parameters']

Parameter Function Notes

Tran The ID of the transaction to invoke 1- to 4-alphanumeric characters.

The transaction must be capable of running the
terminal unattached. For example, use EXEC CICS
RETRIEVE instead of EXEC CICS RECEIVE.

Parameters Any parameters necessary for this
transaction

Maximum length is 80 characters.

/* REXX */
"IMFEXEC CICSTRAN FST2 'QOFF'"
304 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

 be

g or

 in a
returned
CMD
Subject: CMD

The IMFEXEC CMD command performs a variety of functions depending on the parameters supplied. It may
used to:

• Issue a BBI control command

• Issue an MVS command

• Issue an IMS command

• Issue a JES3 command

Command types are recognized by their command characters (the first character of the command). A missin
invalid command character causes the command to be issued and treated like an MVS command.

There are two major command formats: commands that return a full response and those that do not (or do so
limited fashion). In general, enclosing the command argument in quotes indicates that a response should be
to the EXEC.

The different versions of IMFEXEC CMD are:

• CMD - Issue BBI command without response, page 306

• CMD - Issue BBI command with response, page 307

• CMD - Issue MVS command with response (and with X-MCS consoles), page 310

• CMD - Issue IMS command without response, page 315

• CMD - Issue IMS command with response, page 317
Chapter 12. Using the IMFEXEC Statements305

CMD

mmand
CMD (Issue BBI Command without Response)

This command issues a BBI control command.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command switches the active BBI-SS PAS Journal log data set to an alternate data set. The co
and any response are written to the BBI-SS PAS Journal log, which is viewed from LOG DISPLAY.

Command Parameters

CMD .Command
[p1 ... pn]

Parameter Function Notes

Command
and
parameters

The command or command abbreviation
and any parameters

A period (.) identifies the command as a
BBI control command. See theMAINVIEW
Common Customization Guide for a full
description of the BBI control commands.

Value Description

0 This command format always returns a zero condition code.

/* REXX */
"IMFEXEC CMD .I JOURNAL"
306 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

e

CMD (Issue BBI Command with Response)

This command format issues BBI commands. A response is returned to the issuing EXEC.

Command output is placed in LOCAL variables LINE1 through LINEnnnn, where nnnn is the last line (variabl
IMFNOL contains the value of nnnn).

The following table describes the parameters.

Command Parameters

CMD '.Command [p1 ... pn]'
TYPE(BBI)
ALL
ALLWAIT(1 - 9999)

Parameter Function Notes

.Command
and
parameters

The command or command abbreviation
and any parameters

The period (.) identifies the command as a
BBI control command. See theMAINVIEW
Common Customization Guide for a full
description of the BBI control commands.

TYPE Command response designator Must be BBI.

If this is not specified, the command will be
issued as an MVS command.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further responses
as long as responses continue to arrive
within half-second intervals.
Chapter 12. Using the IMFEXEC Statements307

CMD
Condition codes are listed in the following table.

ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.

Example of processing:

Sample command:IMFEXEC CMD
'cmd_text' TYPE(BBI) ALL
ALLWAIT(3)

Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.

This action is repeated until no responses
are recieved within the specified interval.

ALLWAIT is only valid when ALL is
specified.

Value Description

0 Command response returned before WAIT time expired

4 Command partially returned after WAIT time expires

8 No reply has been received

Parameter Function Notes
308 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD
Example

This example EXEC sends the BBI .D A command output to a TSO user ID.

/* REXX */
"IMFEXEC CMD '.D A' TYPE(BBI) ALL"
IF IMFCC < 5 THEN DO
 DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "LOCAL"
 "IMFEXEC SEND 'LINE"N VALUE('LINE'N) "' USER(BBI1)"
 END
END
Chapter 12. Using the IMFEXEC Statements309

CMD

.

ugh
e

ntly. If
he

, all
ATOR

onsoles
e 4-

D.

LIB

may

 X-

hich
CMD (MVS Version with Response through X-MCS Consoles)

This command issues an MVS command using X-MCS consoles. A response is returned to the issuing EXEC

The console choice is automatic and transparent. Command output is placed in LOCAL variables LINE1 thro
LINEnnnn, where nnnn is the last line (variable IMFNOL contains the value of nnnn). These variables must b
retrieved using the VGET command before they can be used.

The number of X-MCS consoles allocated controls the number of commands that can be processed concurre
all consoles are being used and an EXEC issues a command, the EXEC waits until another EXEC releases t
console.

In addition, prior to MVS Version 4, all consoles have only a 1-byte console ID. Beginning with MVS Version 4
consoles (subsystem, MCS, and X-MCS) have a 4-byte console ID and an 8-byte console name. AutoOPER
creates all X-MCS console names using the format:

SSIDnnnn

where:

SSID Is the BBI-SS PAS identifier name

nnnn Is a number from 0 to the total number of X-MCS consoles created

Note: You must make sure that no other application uses these console names.

Some consoles may have a 1-byte console ID in addition to the new 4-byte console ID. For example, MCS c
(defined in the CONSOLxx member of SYS1.PARMLIB) continue to have a 1-byte console ID in addition to th
byte console ID and 8-byte console name. However, X-MCS consoles usually do not have a 1-byte console I

This means that applications that interface with consoles specified in the CONSOLxx member of SYS1.PARM
do not have to be updated to understand 4-byte console IDs.

Applications that will interface with X-MCS consoles need to be updated to understand 4-byte console IDs. You
have some applicationsthat do not yet understand 4-byte console IDs. To remain compatible with these
applications, MVS allows some X-MCS consoles to have a 1-byte migration ID (MIGID) specified. Therefore,
MCS consoles that have a MIGID can interface with applications that have not yet been updated.

In addition, within a sysplex, MVS limits the number of X-MCS consoles with MIGIDs. For this reason,
AutoOPERATOR does not request a MIGID for all X-MCS consoles it creates. Therefore, you must determine w
EXECs using the IMFEXEC CMD statement will need to specify a MIGID.

Command Parameters

CMD '#Command'

[RESPONSE(*|Message ID)]
[COUNT|LINES(1|n)]
[WAIT(30|n)]
[CONSOLE(n)|NAME(xxxxxxxx)]
[ALL]
[ALLWAIT(1 - 9999)]
[MIGID(yes|no)]
[DEBUG]
310 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD
Refer to theMAINVIEW AutoOPERATOR Customization Guide for more information about MVS console
considerations and how X-MCS consoles are allocated with and without MIGIDs.

Command Parameters Notes

‘#Command’ MVS command to be issued The maximum length of an MVS
command is 126 characters.

To prevent the BBI-SS PAS from
interpreting the MVS command command
as a BBI command, make sure you prefix
the MVS command with a pound sign (#).

Prefixing the command with a # causes
AutoOPERATOR to treat the command as
an MVS command. The # is stripped off
the command before it is issued. If the
command you want to issue begins with a
#, make sure you prefix the command with
2 pound signs: ‘##command’.

RESPONSE Message ID(s) expected for response The default is ‘*’, which means any
message. You can specify up to 8 message
IDs, separated by commas, each up to 16
characters long. Wildcards are allowed.

If RESPONSE(*) is specified, the EXEC
picks up all messages from the selected
MVS console. If there are messages that
are responses to previous commands on the
same MVS console, it is recommended that
RESPONSE is coded for the MSG ID.

COUNT|LINES Number of response lines to be retrieved Default is 1. You may specify from 0
through 9999. A Multi Line WTO
(MLWTO) is counted as one line (even
though it may be composed of many lines,
as in some VTAM command responses).

If COUNT(0) is explicitly coded, it means
no response is needed. This format is
recommended over using the IMFEXEC
CMD without response statement.

WAIT Length of time to wait for all response lines
to arrive

Default is 30 seconds. You may specify
from 5 through 999 seconds.

CONSOLE A 1-byte console ID to issue the command
from

This is needed only under unusual
conditions and you must have a valid,
active MVS console available or no
response can be obtained.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further responses
as long as responses continue to arrive
within half-second intervals.
Chapter 12. Using the IMFEXEC Statements311

CMD
ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.

Example of processing:

Sample command:IMFEXEC CMD
'cmd_text' TYPE(BBI) ALL
ALLWAIT(3)

Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.

This action is repeated until no responses
are recieved within the specified interval.

ALLWAIT is only valid when ALL is
specified.

Command Parameters Notes
312 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

ains
the

TKN

e

The IMFEXEC CMD with response results in some variables being set in addition to IMFCC. IMFCCON cont
the 1-byte console ID or migration ID (decimal). If the Extended MCS console does not have a migration ID,
variable IMFCCON contains 255. The variable IMFCNAME contains the console name.

The variable IMFRC contains the return code given by the MVS MGCRE macro (which is used to issue the
command). This return code is meaningful only when issuing the MVS START command. Do not inspect this
variable if you are not issuing the MVS START command. When you issue the MVS START command and if
IMFRC is zero, the variable IMFCASID contains the ASID (decimal) of the started address space and IMFCS
contains the STOKEN (16 hexadecimal characters).

NAME A valid MVS console name Use this parameter if the command must b
issued from a specific MVS console name.

When command responses are expected,
one of three things can happen (depending
on the state of the console of the console
name you specified):

• An active console identified to
AutoOPERATOR will be used.

• No X-MCS consoles are defined so
one will be created and it will not have
a MIGID. When the command ends,
the console is deactivated.

• An inactive X-MCS console is
activated and used for the command.

• When the command ends, the console
is deactivated.

If command responses are not required
(COUNT=0), any valid MVS console
(defined or undefined, active or inactive)
may be specified.

The NAME and CONSOLE parameters
cannot be used together.

MIGID Specify YES or NO to use an X-MCS
console with a MIGID.

MAINVIEW AutoOPERATOR default is
NO. If you specify YES, an X-MCS
console with a MIGID is used.

 DEBUG Issues debugging messages Used for problem diagnosis.

Value Description

0 Command responded within WAIT time

4 Command partially responded within WAIT time

8 No reply has been received, WAIT time has expired

Command Parameters Notes
Chapter 12. Using the IMFEXEC Statements313

CMD

each

nses

turn its
e that
t

Examples

This section contains two examples using the IMFEXEC CMD command statement. A brief discussion follows
example.

Example 1

This EXEC demonstrates how to issue a VTAM command with response. Note, VTAM typically returns its respo
as a Multi-line WTO (MLWTO); therefore, the COUNT parameter should be set to one (the default).

Example 2

This REXX EXEC demonstrates how to issue a JES2 command with response. Note that requesting JES2 to re
responses as a Multi-line WTO (MLWTO) through the L=Z option provides a more reliable means to make sur
you receive all the response lines. Since JES2 (in this case) returns one MLWTO ($HASP636, even though i
comprises many lines), the COUNT parameter should be set to one (the default).

16 Command text is greater than 121 characters

20 Severe error: see short message text for more information

/* REXX */
PARSE ARG EXNAME .
"IMFEXEC MSG '."EXNAME "EID="IMFEID"'"
"IMFEXEC CMD '#D NET,CDRMS' RESPONSE(IST350I)"
"IMFEXEC MSG '."EXNAME "IMFNOL="IMFNOL "CC="IMFCC"'"

DO I=1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC MSG '."EXNAME "LINE"I "LENGTH="LENGTH(VALUE('LINE'I))"'"
 "IMFEXEC MSG '."EXNAME VALUE('LINE'I)"'"
END

"IMFEXEC MSG '."EXNAME "EID="IMFEID "ENDED'"

/* REXX */
PARSE ARG EXNAME .
"IMFEXEC MSG '."EXNAME "EID="IMFEID"'"
"IMFEXEC CMD '#$DJ1-999,L=Z' RESPONSE($HASP636)"
"IMFEXEC MSG '."EXNAME "IMFNOL="IMFNOL "CC="IMFCC"'"

DO I=1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC MSG '."EXNAME "LINE"I "LENGTH="LENGTH(VALUE('LINE'I))"'"
 "IMFEXEC MSG '."EXNAME VALUE('LINE'I)"'"
END

"IMFEXEC MSG '."EXNAME "EID="IMFEID "ENDED'"

Value Description
314 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

 be used

ch

ames
CMD (Issue IMS Command without Response)

This command format issues IMS commands. Only minimal response is returned.

Generic resource names can be specified in the commands using wildcard characters. The plus sign (+) can
to represent any one character, while the asterisk (*) can be used to represent any number of characters.

The response segment is returned in the standard CLIST variable SYSDVAL, which can be parsed using the
READDVAL command. READDVAL functions the same way as in a TSO CLIST.

Note: Command response is not returned when the /MODIFY or /MSVERIFY command is issued.

Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC CMD command statement. A brief discussion follows ea
example.

Example 1 - Issuing generic commands

In this example, AutoOPERATOR issues generic /STA DATABASE commands to start all databases whose n
begin with BE3 or contain the characters ORDER in positions 4-8.

Command Parameters

CMD /IMS command

Parameters Function

/IMS command The IMS command to be issued

Value Description

0 Command issued and first segment of response returned in SYSDVAL.

4 Generic command format resulted in multiple IMS commands. SYSDVAL contains
response to first command.

8 Command timeout, no response returned (Msg IM9215W issued).

12 One of the following:

• Target IMS not available

• The message,IO1317W Command Not Issued, No Matching Resource
Found is returned as a response when there are no matching resources found.

/* REXX */
"IMFEXEC CMD /STA DATABASE BE3ORDER"
"IMFEXEC CMD /STA DATABASE BE3*"
"IMFEXEC CMD /STA DATABASE +++ORDER"
"IMFEXEC CMD /STA DATABASE BE+ORDER"
Chapter 12. Using the IMFEXEC Statements315

CMD

 an *

nd (no
vailable
essing
The * cannot be followed by any other characters and only one can be used in a string. You can use a + and
together in a generic IMS resource command but the * must be the last character.

Example 2 - Retrieving &SYSDVAL

Starts an IMS transaction and verifies that the start command worked. This method of issuing an IMS comma
quotation marks) returns only the first response segment to the EXEC. Additional response segments are not a
to the EXEC. See the description of IMS command with response in the next section for information about acc
all response segments in an EXEC.

/* REXX */
"IMFEXEC CMD /STA TRAN TE4COCNG"
/* SYSDVAL = DFS058 COMMAND COMPLETED EXCEPT FOR TE4COCNG */
READDVAL MSGID P1 P2 P3 P4 P5
IF P3 = 'EXCEPT' THEN DO
 commands
END
316 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

e used to
one by

s.

r of

d

.

CMD (Issue IMS Command with Response)

This command format issues IMS commands. A response is returned to the issuing EXEC.

Generic resource names can be specified in the commands using wildcard characters. The plus sign (+) can b
represent any one character, while the asterisk (*) can be used to represent any number of characters. Only
any other characters. The+ and in a string.

Note: Generic names are not supported for the ?RMxxxxxx DBRC (Database Recovery Control) command

The response segment is returned in the local variable pool in variable LINE1 through LINEnnnn. The numbe
lines returned is available in IMFNOL.

Note: Command response is not returned when the /MODIFY or /MSVERIFY command is issued.

 Command Parameters

CMD '/IMS command'
[COUNT(1|n)]
TYPE(IMS)
DBCTL(dbctltgt)
[WAIT(30|n)]
ALL
ALLWAIT(1 - 9999)

Parameters Function Notes

'/IMS or DBCTL
command'

The command to be issued The maximum length of the IMS comman
is 252 bytes.

Note: The / (slash) designates this
command format as an IMS or
DBCTL command. The quotes
indicate that a response is to be
returned.

COUNT The maximum number of response
segments

Numeric value in the range 1-9999. This
parameter is required.

When the response to a command is an IMS
multi-segment message, the IMFEXEC
CMD TYPE(IMS) stops waiting when any
of the following conditions is met:

• WAIT time has expired.
• COUNT value has been met.
• IMS sent the last segment of a multi-

segment message.

TYPE Command response designator Must be IMS. This parameter is required

If this is not specified, the command will be
issued as an MVS command.
Chapter 12. Using the IMFEXEC Statements317

CMD
DBCTL DBCTL target address space name Must be used for DBCTL-only address
spaces. Must not be used for IMS and
DBCTL address spaces.

WAIT The maximum amount of time, in seconds,
to wait for a command response

Numeric value in the range 5-9999.

When the response to a command is an IMS
multi-segment message, the IMFEXEC
CMD TYPE(IMS) stops waiting when any
of the following conditions is met:

• WAIT time has expired.
• COUNT value has been met.
• IMS sent the last segment of a multi-

segment message.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further responses
as long as responses continue to arrive
within half-second intervals.

ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.

Example of processing:

Sample command:IMFEXEC CMD
'cmd_text' TYPE(BBI) ALL
ALLWAIT(3)IMFEXEC CMD

Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.

This action is repeated until no responses
are received within the specified interval.

ALLWAIT is only valid when ALL is
specified.

Parameters Function Notes
318 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

EC.
eturns

ments.

 for
clude
IMS commands are issued by way of the IMS internal interface, which returns the response to the issuing EX
DBCTL commands are issued as MVS commands prefixed with the DBCTL command character, and MVS r
the response.

Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC CMD command statement.

Example 1

This example requests the transactions whose trancodes begins with TH and receives up to 20 response seg

Example 2

This example utilizes the VDCL function to obtain the first 20 transactions starting with TH* and create Alerts
those with non-zero PLCT. These Alerts will be created with a key = current time in seconds and the text will in
the transaction name and the PLCT value.

Value Description

0 Command responded within WAIT time

4 Command partially responded within WAIT time

8 No reply has been received, WAIT time has expired

12 Target IMS not active; no matching resource for generic command

/* REXX */
 "IMFEXEC CMD '/DIS TRAN TH*' COUNT(20) TYPE(IMS)"
 DO N = 1 to IMFNOL
 "IMFEXEC VGET LINE"N" LOCAL"
 "IMFEXEC MSG 'LINE"N"="VALUE('LINE'N)" ' "
 END

 EXIT

/* REXX */
"IMFEXEC CMD '/DIS TRAN TH*' COUNT(20) TYPE(IMS)"
"IMFEXEC VDCL DISPLAY LIST (MSG A B C D E F G H I J K L M)"
KEY = TIME('S')

DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N" INTO (DISPLAY) LOCAL"
 IF (MSG = T02) & (F > 0) THEN DO
 "ALERT "KEY" ' 'TRAN = "A" COUNT = "F" ' FUNCTION(ADD)",
 " QUEUE(TEST) ORIGIN(REGIS) COLOR(RED)"
 END
END

EXIT
Chapter 12. Using the IMFEXEC Statements319

CMD
Example 3

This example shows how to issue the IMS command /DIS A with a response and process the LINE1...LINEI
variables, which contain the response messages.

/*REXX*/
"IMFEXEC CMD '/DIS A' ALL TYPE(IMS)"
"IMFEXEC MSG 'IMFCC="IMFCC" IMFNOL="IMFNOL"'"
DO I = 1 TO IMFNOL
"IMFEXEC VGET LINE"I" LOCAL"
"IMFEXEC MSG 'LINE"I"="VALUE('LINE'I)" ' "
END
EXIT
320 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CNTL

 with

e

n

.

CNTL
Subject: CNTL

This command controls the general processing flow and characteristics of an EXEC.

Use this command for help in debugging AutoOPERATOR EXECs. CNTL LIST causes all commands issued
the EXEC to be listed in the BBI-SS PA Journal log. Refer to Chapter 13, “Testing and Debugging EXECs
Interactively” on page 411 for more information about testing EXECs.

The following table describes the parameters.

Command Parameters

CNTL [CMD|NOCMD]
[LIST|NOLIST]
[PERLIM()]
[TIMLIM()]
[SELLIM()]
[MAXTPUT()]
[GLOBAL|LOCAL]

Parameter Function Notes

CMD Normal EXEC processing is in effect Default

LIST List every EXEC command in the
BBI-SS PAS log

NOCMD Do not process action commands When NOCMD is in effect in the current CLIST, th
following IMFEXEC commands are not executed:
CMD, CICSTRAN, IMSTRAN, SUBMIT, RES
CMD, RES EXIT, RES MCMD, and RES VMCMD.
A message is printed in the BBI-SS PAS Journal log
informing you that the command would have been
executed if this control request were not in effect. This
is an easy way to test new EXECs.

NOLIST Normal EXEC processing is in effect Default

PERLIM CPU percentage limit for the EXEC If the CPU usage of an EXEC exceeds this value i
any 15 second interval after the EXEC begins, the
EXEC will be terminated.

The CPU percentage is calculated based on the total
CPU time available on 1 CPU within that 15 second
interval. For example, 20% means 20% of 15 seconds
If the CPU time exceeds 3 seconds with any given 15
second interval, the EXEC will be terminated.

The maximum CPU percentage usable is 100%, even
on multiprocessor machines.

Specifying 0 means no CPU percentage checking is
performed.
Chapter 12. Using the IMFEXEC Statements321

CNTL

ime

s.

ted
Condition codes are listed in the following table.

Example

This command causes echoing of all IMFEXEC commands and the termination of the EXEC if its total CPU t
exceeds 5 seconds.

TIMLIM CPU time limit for the EXEC If the EXEC exceeds this value in CPU seconds, it is
terminated.

Specifying 0 means no CPU time checking is
performed.

SELLIM Limits the number of nested EXECs
in the current EXEC thread

This applies only to nested EXECs invoked with the
IMFEXEC SELECT command using WAIT(YES).

Specifying 0 means no limit checking is performed.

MAXTPUT Limits the number of TPUTs that can
be issued from the current EXEC

TPUTs occur when a REXX EXEC uses the TRACE
command and when there are TSO/E error message

Specifying 0 means no limit checking is performed.

Note: The use of the PERLIM, TIMLIM, SELLIM, and MAXTPUT parameters in an EXEC will temporarily
override corresponding parameters set in the BBPARM member (as well as those dynamically upda
using the Dynamic Parameter Manager application) as follows:

PERLIM PEREXLIM
TIMLIM TIMEXLIM
SELLIM SELLIM
MAXTPUT MAXTPUT

GLOBAL Propagate CNTL settings to all
called EXECs

When set, any EXEC invoked through the IMFEXEC
SELECT command inherits the CNTL settings of the
current EXEC.

LOCAL All settings are local to this EXEC CNTL settings will not be propagated to EXECs
called by this EXEC.

Value Description

0 Command was executed

8 Invalid syntax was used

/* REXX */
"IMFEXEC CNTL LIST TIMLIM(5)"

Parameter Function Notes
322 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

DOM

ere
is no

s.

M or
DOM
Subject: DOM

This command deletes a WTO or WTOR.

Certain descriptor codes indicate to MVS that a WTO should not roll off the master console but should stay th
until explicitly deleted by the operator. If the cause for this WTO is no longer present, or the reply for a WTOR
longer required, the WTO(R) can be deleted using the IMFEXEC DOM command.

Two AutoOPERATOR variables are used to determine the domid of a WTO or WTOR, or Rule-initiated EXEC
IMFWTDOM is set when an IMFEXEC WTO or IMFEXEC WTOR command is issued. IMFDOMID is set for
Rule-initiated EXECs triggered by WTOs, WTORs, or MWTO events. It may be necessary to save IMFWTDO
IMFDOMID in a shared variable so that a subsequent EXEC can issue the DOM.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example deletes the WTO(R) that caused the EXEC to be triggered.

DOMID for a WTO or WTOR that is issued by an EXEC is placed in variable IMFWTDOM.

Command Parameters

DOM ID(domid)

Parameter Function Notes

ID(domid) The WTO(R) Sequence
number

It uniquely identifies a WTO(R) and can be retrieved either:

• In Rule-initiated EXECs (that are triggered by the event
types WTO, WTOR, or MWTO) using the IMFDOMID
variable

• In an EXEC that issues IMFEXEC WTOs or WTORs
from IMFWTDOM.

Value Description

0 DOM issued

8 DOM ID missing

/* REXX */
"IMFEXEC DOM ID("IMFDOMID")"
Chapter 12. Using the IMFEXEC Statements323

EXIT
EXIT
Subject: EXIT

This command sets the return code IMFRC.

The following table describes the parameters.

Note: This command does not terminate the EXEC. You must explicitly terminate the EXEC using standard
REXX constructs.

Condition codes are listed in the following table.

Example

This example command terminates the current EXEC and signals a return code (IMFRC) of 12.

Command Parameters

EXIT [CODE(0|n)]

Parameter Function Notes

CODE The return code to be passed back to the
invoker

This return code will be passed on to an
IMFSUBEX program or an EXEC in the
variable IMFRC.

Value Description

0 This command always returns a zero condition code

/* REXX */
"IMFEXEC EXIT CODE(12)"
324 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

HB

ged every
HB
Subject: HB

This command changes the interval between heartbeat messages exchanged by a BBI-SS PAS and the Elan
workstation.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This command forces heartbeat messages between the BBI-SS PAS and the Elan Workstation to be exchan
20 seconds.

Command Parameters

HB [INTERVAL(30|n)]

Parameter Function Notes

INTERVAL The number of seconds between heartbeat
messages exchanged between the BBI-SS
PAS and the Elan Workstation

This command changes the interval for both
the BBI-SS PAS and the Elan Workstation.
The change takes effect after the expiration
of the current interval.

Value Description

0 Command successfully executed

8 Interval specification missing or invalid

/* REXX */
"IMFEXEC HB 20"
Chapter 12. Using the IMFEXEC Statements325

IMFC

to the

he
IMFC
Subject: IMFC

This command issues an IMF or MAINVIEW for DB2 service command to:

• Invoke an analyzer display

• Start and stop monitors

• Invoke monitor displays (such as PLOT and DMON)

• Invoke a display for automatic image logging

This command supports only local targets. Local targets are assigned in BBPARM member BBIJNT00 (refer
MAINVIEW Common Customization Guide for more information about this BBPARM member).

The following table describes the parameters.

If you use the parametersSCROLL=YES,IMAGE=NO, the data retrieved will contain every screen one by one until t
line END OF DATA is found. If you use the parametersSCROLL=YES,IMAGE=YES, all screens are logged but the data
contains only the last screen.

Command Parameters

IMFC Command/options
TARGET|IMSNAME=,
[IMAGE=,]
[USRID=,]
[SCROLL=YES|NO]

Parameter Function Notes

Command/options An IMF or MAINVIEW for DB2 service
command and any required parameters

1- to 8 alphanumeric characters.

TARGET=
IMSNAME=

The target for the request

This command supports only local targets.
Local targets are assigned in BBPARM
member BBIJNT00 (refer to the
MAINVIEW Common Customization Guide
for more information about this BBPARM
member).

An IMSID (or alias) value can be used as
the TARGET name if it has been specified
in the BBIJNT00 member of BBPARM. If
TARGET= is not specified, a PM0330E
error message is logged in the BBI-SS PAS
Journal log and the request is terminated.

IMAGE= Write output to the Image Log
(BBIIMAGx)

YES or NO. YES is the default.

USRID= The user ID to be associated with the
command.

The user ID is checked when requests to
purge monitor services are processed. The
default is AUTOID from BBIISP00 or the
characters USRID.

SCROLL= Scrolls the display forward one full page
(40 lines) from the previous IMFC request
if scrolling is available in that particular
display

YES or NO. NO is the default.
326 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFC

ch

 data
BBI
Examples

This section contains examples using the IMFEXEC IMFC command statement. A brief discussion follows ea
example.

Note: Remember that the IMFC statement does not return a value in IMFNOL.

Example 1

This example shows a REXX EXEC issuing the IMFC OSTAT service. The EXEC loops until there is no more
and checks the terminals with the status: NOT CONNECTED. For these terminals, it issues message on the
LOG.

/* REXX */

LAST = '' /* FOR THE FIRST TIME */

LOOP:

IF LAST = '' THEN "IMFEXEC IMFC OSTAT LTERM=B* TARGET=IMS41X"
ELSE "IMFEXEC IMFC OSTAT LTERM=B* START="LAST" TARGET=IMS41X"

I = 4
DO WHILE I <= 24
 "IMFEXEC VGET LINE"I" LOCAL"
 IF SUBSTR(VALUE('LINE'I),67,9) = 'CONNECTED' THEN
 DO
 TERM = SUBSTR(VALUE('LINE'I),2,8)
 IF 'LINE'I = 'LINE24' THEN NOP /* LINE24 WILL BE INCLUDED IN NEXT */
 ELSE
 "IMFEXEC MSG 'TERMINAL "TERM" IS NOT CONNECTED'"
 END
ELSE NOP
I = I + 1
END
LAST = SUBSTR(VALUE('LINE24'),2,8) /* LAST TERMINAL ON THE SCREEN */

IF LAST ,= '' THEN SIGNAL LOOP;
ELSE EXIT
Chapter 12. Using the IMFEXEC Statements327

IMFC

vice.

queue
n local
Example 2

This example shows a REXX EXEC that issues the IMFC USER service with a parameter of RESPINP. The
RESPINP parameter is used for IMS terminals in response input mode. The USER service is a scrollable ser

The REXX EXEC invoked with the SELECT command, FREERSP, issues IMS commands to display, stop, de
and start the terminals. Note that for multiple screens of data returned, the IMFC service returns the screen i
variables LINE8 through LINE43, then places the next screen in the same variables, LINE8 through LINE43.

/* REXX */
"IMFEXEC VGET QIMSNAME"
"IMFEXEC IMFC USER RESPINP TARGET="QIMSNAME" IMAGE=NO"
DO I = 8 TO 43
 "IMFEXEC VDCL IMFL"I" LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)"
 "IMFEXEC VGET LINE"I" INTO(IMFL"I") LOCAL"
 "IMFEXEC MSG .. "V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11"'"
 IF SUBSTR(V1,1,3) = '***' THEN EXIT
END
DO 900
 "IMFEXEC IMFC USER RESPINP TARGET="QIMSNAME" IMAGE=NO SCROLL=YES"
 DO I = 8 TO 43
 "IMFEXEC VDCL IMFL"I" LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)"
 "IMFEXEC VGET LINE"I" INTO(IMFL"I") LOCAL"
 "IMFEXEC MSG .. "V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11"'"
 IF SUBSTR(V1,1,3) = '***' THEN EXIT
 END
END
328 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFC SET PRG=CALLX

ter
IMFC SET PRG=CALLX|ALL
Subject: IMFC SET PRG=CALLX

This command uses SET PRG=CALLX|ALL to terminate a time-initiated EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

IMFC SET PRG=CALLX| ALL Execname
[USRID=userid,]
TARGET=target name

Parameter Function Notes

USRID= The name of the user ID against which
authorization checking is performed (if this
is different from the user ID of the originator
of the request).

If the user ID is different from the user ID of
the request's originator, the purging user ID
must have authority to purge the originator's
CALLX requests.

To accomplish this, code PMACC=# on the
AUTHJOB= statement in the BBPARM
authorization member for the appropriate
user ID.

Note: If PRG=ALL is specified, security is done against the user ID that is specified on the AUTOID parame
for the BBPARM member BBIISP00.

TARGET= The target against which the CALLX
request will be purged.

Value Description

0 Command executed successfully

8 One of the following:

• TARGET= is missing

• An error in the monitor or analyzer service occurred (Msg PM0334E issued)

• Syntax error in SET command (Msg PM0337E issued)

16 Handling program not found
Chapter 12. Using the IMFEXEC Statements329

IMFC SET PRG=CALLX
Example

This example shows how to use the IMFEXEC IMFC SET PRG=CALLX command statement.

This example terminates a time-initiated EXEC called IMSCHECK. It can be called from a Rule when IMS
terminates.

"IMFEXEC IMFC SET PRG=CALLX IMSCHECK"
330 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFC SET REQ=CALLX

e-

enu.

XEC.
IMFC SET REQ=CALLX
Subject: IMFC SET REQ=CALLX

This command uses SET REQ=CALLX to start a time-initiated EXEC or SET PRG=CALLX to terminate a tim
initiated EXEC.

The following table describes the parameters.

CALLX requests can be viewed and purged when you select the TIMEXEC option from the EXEC Manager M

Condition codes are listed in the following table.

Command Parameters

IMFC SET REQ=CALLX Execname
[START=hh:mm::ss,]
[STOP=hh:mm:ss,]
[STOPCNT=()]
[I=00:01:00|hh:mm:ss,]
[USRID=userid,]
TARGET=target name

Parameter Function Notes

Execname The name of the EXEC to be scheduled No parameters can be passed to the E

START= The start time for an EXEC Format is: HH:MM:SS.

STOP= The stop time for rescheduling the EXEC Format is: HH:MM:SS.

STOPCNT= The number of times the EXEC will be
scheduled

A valid decimal number.

I= The interval between EXEC schedules Format is HH:MM:SS.

TARGET= The target against which the EXEC will be
scheduled

USRID= The name of the user ID for the request
using the online application

The value specified will be used for
authorization checking. It also will become
the owner of the resulting request.

Value Description

0 Command executed successfully

8 One of the following:

• TARGET= is missing

• An error in the monitor or analyzer service occurred (Msg PM0334E issued)

• Syntax error in SET command (Msg PM0337E issued)

16 Handling program not found
Chapter 12. Using the IMFEXEC Statements331

IMFC SET REQ=CALLX

 at 4:00
equest.
Example

This example shows how to use the IMFEXEC IMFC SET REQ=CALLX command statement.

This example causes an EXEC named @HOURLY to be issued every hour, beginning at 6:00 am and ending
pm on the same system that this EXEC is invoked on. The user with user ID JDB1 will be able to purge this r
Also, any user with PMACC=# coded in the BBPARM user ID authorization member can purge this request.

/* REXX */
"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00 STOP=16:00:00",
 "I=01:00:00 TARGET="IMFORGSS "USRID=JDB1"
332 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMSTRAN

 not

input
IMSTRAN
Subject: IMSTRAN

This command submits IMS transactions.

The following table describes the parameters.

The response, if any, is queued to the LTERM specified in the RLTERM parameter of the BBPARM member
AAOTRN00 of the target system. The default value is MASTER. You can set RLTERM=DFSMTCNT if you do
want any output to be sent back to the inputting LTERM.

Within IMS, the transaction is viewed as a normal transaction once it arrives in the message queue, with the
LTERM set to the RLTERM value. Only one destination LTERM is provided per BBI-SS PAS and IMS.

Condition codes are listed in the following table.

Example

This example invokes the IMS transaction ADDPART.

Command Parameters

IMSTRAN Transaction code
['p1 ... pn']

Parameter Function Notes

Transaction code and (optional)
operands

Transaction code of transaction to
invoke and optional parameters

Transaction code name must be
defined in AAOTRN00. Any
optional parameters must be
included in quotes.

Maximum length is 255 characters.
If a command does not require an
operand, you must code ' ' (a blank)
as the operand. Conversational or
remote transactions are not
supported.

In a shared queue environment, the
combined length of all operands
passed must not exceed 106
characters.

Value Description

0 Command issued successfully.

12 An error occurred. The error message is logged to the BBI journal.
Chapter 12. Using the IMFEXEC Statements333

IMSTRAN

void
Note: If you need to continue this command, use the minus sign (-) as the TSO continuation character to a
inserting a blank into the statement.

/* REXX */
"IMFEXEC IMSTRAN ADDPART 'AB960C10,RIVET,74'"
334 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

JES3CMD

leases

3

JES3CMD
Subject: JES3CMD

This command issues a JES3 command through the subsystem interface. It should be used only for JES3 re
prior to 2.2. IMFEXEC CMD should be used for newer releases.

A response is not returned to the EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command displays JES3 status information about job PROD1234 on the JES console.

Command Parameters

JES3CMD 'JES3 command'

Parameter Function Notes

Command The JES3 command to be issued The maximum length is 127 bytes. The JES
command character specified in BBPARM
member BBISSP00 is automatically appended to
the front of the command. Refer to the
MAINVIEW Common Customization Guide for
details.

Value Description

0 Command was executed successfully

8 Invalid syntax used

/* REXX */
"IMFEXEC JES3CMD I,J=PROD1234"
Chapter 12. Using the IMFEXEC Statements335

JESALLOC

n a JES
JESALLOC
Subject: JESALLOC

Unlike the TSO ALLOCATE command, this command may be used to allocate a subsystem data set even whe
connect was performed (such as, JES was started after the AutoOPERATOR subsystem).

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows how to use the IMFEXEC JESALLOC command statement.

Allocates a SYSOUT data set in the SYSOUT class A to the DD statement ‘MYPRINT’.

Note: You can use the TSO FREE command to free this DD statement again.

Command Parameters

JESALLOC DDNAME [CLASS] [SYSOUT]

Parameter Function Notes

DDNAME Name of the DD statement that is
be allocated.

The maximum length is eight characters and must
conform to the DD name specifications.

CLASS Class to be associated with this
SYSOUT DD statement. Specify
'*' for the MSGCLASS of the STC.

This parameter is a one-character valid JES
output class.

SYSOUT A literal indicating that this DD
statement should be allocated to
SYSOUT.

Code this parameter to be compatible with future
extensions to this command.

Value Description

0 Command successfully executed

4 JES rejected the allocation request

8 Not connected to JES (started under MSTR and no JESCNCT card in
bbissp00)

16 Syntax error

20 DD name in use (use TSO free command first)

/* REXX */
“IMFEXEC JESALLOC MYPRINT SYSOUT CLASS(A)”
336 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

JESSUBM

 a JES
f this

t

JESSUBM
Subject: JESSUBM

Unlike the TSO SUBMIT command, this command may be used to allocate a subsystem data set even when
connect was performed (such as, JES was started after the AutoOPERATOR subsystem). Two advantages o
command are as follows:

• It can submit a job directly from variables.
• It returns the job number of the submitted job in a variable.

Note: The JESSUBM command will not drive the TSO SUBMIT exit IKJEFF10.

The following table describes the parameters.

Note: STEM() and DSN() are mutually exclusive; however, one or the other must be specified.

Condition codes are listed in the following table.

Command Parameters

JESSUBM DSNAME | DS | DA | DSN
STEM

Parameter Function Notes

DSNAME | DS | DA |
DSN

Name of the data set to submit.
Sequential and partitioned data sets
are supported. When specifying a
partitioned data set, a member
name must be supplied.

Length can be from 1 to 44 characters conforming
to data set name specifications. The data set mus
have an LRECL of 80.

STEM Set of REXX stem variables that
contain the JCL to be submitted.

Length can be from 1 to 26 characters conforming
to variable naming conventions. The separator
character between variable name and index is ‘.’
(according to REXX stem variable syntax). The
variable with the index 0 is assumed to contain
the count of variables to be processed.

Note that the variable contents should not exceed
80 characters in length.

Contents in columns 72 through 80 is accepted.

Value Description

0 Command successfully executed

4 JES rejected the allocation request

8 INTRDR cannot be dynamically allocated. This error can happen if JES
has not yet started.
Chapter 12. Using the IMFEXEC Statements337

JESSUBM

345).

is

in
After a successful submit, the variable IMFJESNR is set to the job ID of the submitted job (for example, JOB12
If multiple jobs were submitted as a stream, this variable contains the job ID of the first job in this stream.

Note: Use of this command is recommended over the traditional IMFEXEC SUBMIT command.

Example

Examples of the IMFEXEC JESSUBM command statement follow.

Example 1:

Submits the JCL contained in the PDS member ‘BAORAE.JCL.CNTL(IEFBR14)’

Example 2:

Submits the JCL contained in the variables S.1 and S.2.

12 Specified data set cannot be allocated or opened or data set LRECL
less than or greater than 80, or data set name is too long.

16 Syntax error occurred.

20 Error processing input variables.

24 Not connected to JES (started under MSTR and no JESCNCT card is
BBISSP00).

28 Invalid input data set or error writing to INTRDR.

/* REXX */
“IMFEXEC SUBMIT DA(’BAORAE.JCL.CNTL(IEFBR14)’)”

/* REXX */
S.1='//BAOBR14 JOB (3911),'ERNST',CLASS=K,MSGCLASS=A,NOTIFY=BAORAE2'
S.2='//IEFBR14 EXEC PGM=IEFBR14'
S.0=2
"IMFEXEC JESSUBM STEM(S)"

Value Description
338 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

LOGOFF

eter is

IX()
LOGOFF
Subject: LOGOFF

This command terminates the connection between an EXEC and an OSPI session. If the DISCONNECT param
not specified, it also logs off the application and frees all internal resources associated with the session.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command terminates a session previously established using a LOGON command with a PREF
parameter specifying TSO.

Command Parameters

LOGOFF SESSION()
[DISCONNECT]

Parameter Function Notes

SESSION() Specifies the session identifier that is
returned when establishing a session with
the LOGON command

Determined by the results of the LOGON
command.

DISCONNECT Request temporary disconnection of the
session

If specified, retains the session in the
background so it can be picked up by a later
LOGON command.

Otherwise, it issues a TERMSESS macro
against the application and closes the VTAM
ACB that communicates with the
application. This results in an unconditional
LOGOFF from the application. All internal
resources associated with this session are
freed.

Value Description

0 Command executed successfully

8 Syntax error or indicated session not found

/* REXX */
"IMFEXEC LOGOFF SESSION("TSOSESS")"
Chapter 12. Using the IMFEXEC Statements339

LOGON

n output
LOGON
Subject: LOGON

This command establishes a session between an EXEC and a VTAM application and supplies the first scree
to the EXEC.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

The following table describes the parameters.

Command Parameters

LOGON [APPLID|ACB(Application name)]
[DATA|USERDATA(Userdata)]
[PREFIX(OSI|Prefix)]
[SESSION(Session identifier)]
[REQACB(ACB to use)]
[LOGMODE(D6327802|Logmode)]
[DEBUG|NODEBUG]
[NORECEIVE]

Parameter Function Notes

APPLID|ACB The ACB name of the application (to
establish a session with) as it is specified
in SYS1.VTAMLIST

Required if the SESSION parameter is not
specified. 1-8 alphanumeric characters.
The application must be active and
accepting LOGONs.

DATA| USERDATA Any data passed to the application during
logon processing

Maximum length is 80 characters.

PREFIX OSPI variable name prefix Must be exactly 3 characters long. The
first character must be an alpha character.

SESSION Session identifier of a previously
disconnected session

When specified, this parameter indicates
that no new session should be established
but an existing session reconnected.

REQACB ACB to use to communicate with the
application

Since the ACB name used will also
represent the terminal name when
connecting to an application, this
parameter may be used for applications
which allow access only from specific
terminals. If this ACB is unavailable for
whatever reason, the command will fail.

LOGMODE Logmode to use when requesting a session The logmode determines the screen
characteristics to emulate (in particular,
the virtual screen size).
340 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

LOGON

. All

e

ESS.

sion
Condition codes are listed in the following table.

Example

This example command establishes a session to the application BTSO and passes the string SYSUSER to it
control variables have the prefix TSO and no debugging messages are generated.

Following the successful execution of this LOGON command, the variable xxxSESS (where xxx represents th
session prefix) must be retrieved from the local variable pool. If it is not retrieved, you cannot perform further
commands against this session.

The token contained in this variable uniquely identifies the session. The default name for this variable is OSIS
Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information.

DEBUG|NODE- BUG Controls whether or not execution of all
activities against the resulting session will
execute in DEBUG mode

When specified, many messages about
internal activities are generated and buffer
snaps are taken.

NORECEIVE Specify this parameter when logging on to
an application that does not display an
initial panel before allowing the terminal
user to enter data.

Value Description

0 Command was executed successfully

4 A LOGON with the SESSION parameter was issued but failed to reestablish the ses

8 Syntax error or LOGON failed

/* REXX */
"IMFEXEC LOGON APPLID(BTSO) DATA(SYSUSER) LOGMODE(D6327803) PREFIX(TSO)"
"IMFEXEC VGET TSOSESS LOCAL"

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements341

MSG

s logged

t

MSG
Subject: MSG

This command logs a message in the BBI-SS PAS Journal log.

The following table describes the parameters.

Note: Specifying a null variable for Message text causes an error.

Condition codes are listed in the following table.

Example

This example sends a message to the BBI-SS PAS monitoring the target named CICSPRDA. The message i
on the remote Journal and no entry is made on the originating system's Journal.

Command Parameters

MSG 'Message text'
[TARGET(Target name)]

Parameter Function Notes

Message text Text of the message to issue Maximum length is 252 bytes.

TARGET Target system name 1-8 alphanumeric characters. Valid targe
names are defined in the BBIJNT00
member of the BBPARM data set.

Value Description

0 Command was executed successfully

8 NODE is not found when TARGET is used (check BBINOD00 in BBPARM)

12 TARGET is not found when target is used (check BBIJNT00 in BBPARM)

16 NODE is not available

/* REXX */
"IMFEXEC MSG 'MANUFACTURING DATABASE IS OFFLINE' TARGET(CICSPRDA)"
342 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

NOTIFY

ion
NOTIFY
Subject: NOTIFY

This command sends a request through AutoOPERATOR to issue a pager call to the AutoOPERATOR Elan
Workstation.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command notifies the individual SYSPROG through the Elan Workstation, passing the informat
SYSTEM to the pager.

Command Parameters

NOTIFY NAME(Phone number)
[INFO(‘Text’)]

Parameter Function Notes

NAME The contact name defined to the Elan
Workstation

1-32 characters alphanumeric. Elan equates
this name to a telephone number to be
dialed.

INFO Any information to be passed and placed on
the pager

1-12 alphanumeric characters.

Text must be included in quote marks.

Value Description

0 Elan successfully passed the information

8 The request timed out

12 Elan could not execute the request

16 Elan communications were not established

/* REXX */
"IMFEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM)"
Chapter 12. Using the IMFEXEC Statements343

POST

 (for
POST
Subject: POST

This command notifies an EXEC that has issued the IMFEXEC WAIT command that it can resume execution
example, makes that EXEC dispatchable again).

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

POST name
CODE(code)
TARGET(targetname)

Parameter Function Notes

name Specify a name that matches the name
specified by another EXEC using the
IMFEXEC WAIT command

The value of this parameter must match the
NAME parameter of a previously executed
IMFEXEC WAIT command. Refer to
“WAIT” on page 404 for more information.

1-32 alphanumeric characters.

CODE(code) Optional. Can be 1-255 characters

If the code contains blanks, it must be
entered in single quotation marks.

Available to the reawakened EXEC in the
TSO variable IMFPOST.

1-255 alphanumeric characters.

TARGET(target) Target system name

Valid target names are defined in the
BBIJNT00 member of the BBPARM data
set.

1-8 alphanumeric characters.

Value Description

0 Name successfully posted

4 No waiting EXEC found

8 Node not found

12 Target not found

16 Node not available
344 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

POST

or
he
Example

This example posts the name TEST with a code of ABC to the target called SYSA. An EXEC that is waiting f
TEST to be posted will now be reenabled when TEST is posted. The value of the code can be examined by t
reenabled EXEC by using the variable IMFPOST.

"IMFEXEC POST TEST CODE(ABC) TARGET(SYSA)"
Chapter 12. Using the IMFEXEC Statements345

RECEIVE

ns that

t, you

.

RECEIVE
Subject: RECEIVE

This command issues a VTAM RECEIVE against an OSPI session. It is used for OSPI sessions with applicatio
use non-standard protocol.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

When using this statement, you must remember to code IMFEXEC with the RECEIVE command. If you do no
might cause the TSO/E RECEIVE command to be invoked.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This command attempts to receive another data packet from the session identified by the CNMSESS variable

Command Parameters

RECEIVE [TIMEOUT(10|n)]

Parameter Function Notes

TIMEOUT The time to wait, in seconds, for data to
arrive

Numeric value in the range 0-9999.

Value Description

0 Command was executed successfully, data was received

4 No data was available during the given interval

/* REXX */
"IMFEXEC RECEIVE SESSION("CNMSESS")"
346 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

RES

talled

ices as

ed using

ed
RES
Subject: RES

This command executes basic SYSPROG services commands.

To use this command, you must have the AutoOPERATOR for MVS component installed. If SYSPROG is ins
but AutoOPERATOR for MVS is not, this command will not function. When AutoOPERATOR for MVS is not
installed, use the IMFEXEC CMD (MVS command with response) command to access basic SYSPROG serv
an MVS started task using an MVS MODIFY command to the SYSPROG services task.

Output from SYSPROG service commands is placed in LOCAL variables LINE1 thru LINEnn, where IMFNOL
contains the number of lines returned. Parentheses in the output are removed. These variables must be retriev
an IMFEXEC VGET command before they can be used in an EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

RES SYSPROG command
or
'SYSPROG command' WAIT(60|nnnn)

Parameter Function Notes

SYSPROG service
command

The SYSPROG service command,
including any required parameters

Any supported SYSPROG services
command.

WAIT(60|nnnn) Amount of time to wait for a response
from the command

The default is 60 seconds or nnnn, which
can be a value from 0 to 9999 seconds.

Value Description

0 Command was executed successfully

8 No service parameter was passed when required

12 Command timed out in interface to SYSPROG service (the response time exceed
60 seconds).

Note: SYSPROG service commands that require a user response (for example,
CHAP) cause a timeout in the SYSPROG service interface. Refer to the
RESOLVE PLUS Reference Manual for more information about how to
determine if a command requires a response.

20 AutoOPERATOR for MVS is not installed.
Chapter 12. Using the IMFEXEC Statements347

RES

er of
tput is

that a
Example

The output from this example is automatically put into variables named LINE1 - LINEnn, where nn is the numb
lines in the output. The variable ASML1 is declared to contain a list of seven variables. The first line of the ou
placed into ASML1, which parses the line automatically into the seven variables.

The IPLTYPE variable is put into the SHARED variable pool and a message is issued to the Journal to indicate
certain type of IPL start was performed.

/* REXX */
"IMFEXEC RES ASM"
"IMFEXEC VDCL ASML1 LIST(V1 V2 V3 V4 IPLTYPE V6 V7)"
"IMFEXEC VGET LINE1 INTO(ASML1) LOCAL"
"IMFEXEC VPUT IPLTYPE"
"IMFEXEC MSG 'AN IPL "IPLTYPE "START WAS PERFORMED’”
348 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SCAN

se the
t for

to

e

s 1.
SCAN
Subject: SCAN

This command performs any of the following actions on the VTAM buffer image of an OSPI session:

• Finds a specific character string

• Positions the cursor in the first input field following a specified character string

• Retrieves data from the buffer image into user-defined variables To perform all three functions, you must u
parameters SESSION, ROW, and COLUMN. The default for ROW and COLUMN is 1. There is no defaul
SESSION.

For more information about performing these functions and which additional parameters you must use, refer
“Using Parameters” on page 350.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

The following table describes the parameters.

Command Parameters

SCAN [ROW(Starting row)]
[COL(Starting column)]
[TEXT(Target text)]
VAR IABLE(Variable name)|[POSITION]
[LENGTH(n)]
SESSION(Session identifier)
[CASE|NOCASE]
[TRIM|NOTRIM]

Parameter Function Notes

ROW The row in which to begin the scan Numeric value in the range one through th
maximum number of rows supported by the
emulated terminal. Default is 1.

COL The column in which to begin the scan Numeric value in the range 1-80. Default i

TEXT The text to scan for Maximum length is 255 characters

Note: TEXT and VARIABLE cannot be
coded together on the same
statement.

VARIABLE The name of the variable to receive the
data

Do not specify a leading ampersand (&).
Either VAR or POSITION or both must be
specified.

Note: TEXT and VARIABLE cannot be
coded together on the same
statement.

LENGTH The number of characters to place into the
target variable

Required with VAR. Numeric value in the
range 1-255.
Chapter 12. Using the IMFEXEC Statements349

SCAN

ases,

d.

en

, cause

e.
Using Parameters

This section describes which parameter you must use to perform certain functions with IMFEXEC SCAN.

Searching for string and positioning the cursor: The following additional parameters must be used with
IMFEXEC SCAN when you want to either search for a string or position the cursor:

• TEXT

Indicates a request to find a text string.

The parameters VARIABLE, LENGTH, and TRIM do not apply when searching for text (and can, in some c
cause syntax errors). Do not specify any of these parameters when you use TEXT.

• CASE

Indicates whether to perform a case-sensitive search for TEXT keyword.

• POSITION

Indicates whether or not to position the cursor. If POSITION is not specified, the position will not change

Retrieving data into variables: The following additional parameters must be used with IMFEXEC SCAN wh
you want to retrieve data into variables:

• VARIABLE

Indicates a request to retrieve data.

The parameters TEXT, CASE, and POSITION do not apply when retrieving data (and can, in some cases
syntax errors). Do not specify any of these parameters when you use VARIABLE.

• LENGTH

This is required to retrieve data.

• TRIM

Indicates whether or not to remove trailing blanks, nulls, and control characters from the returned variabl

SESSION Session identifier of the OSPI session that
should be accessed

Provided by the LOGON command.

CASE Performs a case-sensitive scan for TEXT Default is NOCASE.

NOCASE Performs a non-case-sensitive scan for
TEXT

TRIM All leading and trailing blanks, nulls, and
control characters are to be removed from
the returned variable

Default is NOTRIM

NOTRIM The data is placed into the target variable
exactly as found

POSITION The cursor is automatically positioned in
the next input field following the indicated
character string

Either VAR or POSITION or both must be
specified.

Parameter Function Notes
350 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SCAN

ach

ERID.

fter

gical
0, and
Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC SCAN command statement. A brief discussion follows e
example.

Example 1

This example command scans the screen beginning at the upper left-hand corner for the character string, US
The scan is performed against the session designated by the TSOSESS variable.

The scan is not case-sensitive. The 25 characters following the string are placed into the variable MYUSER a
trailing and leading blanks have been removed.

Example 2

This example places the cursor in the input field after row 10, column 10, for the virtual screen buffer with the lo
unit specified by the variable OSISESS. This command is equivalent to placing the cursor on row 10, column 1
pressing the TAB key.

Value Description

0 Command was executed successfully; text was found

4 Text not found

8 One of the following:

• Syntax error

• Conflicting parameters specified

• Session not found

/* REXX */
"IMFEXEC SCAN TEXT(USERID) VAR(MYUSER) LENGTH(25) TRIM NOCASE",
 "SESSION("TSOSESS")"

/* REXX */
"IMFEXEC SCAN ROW(10) COL(10) POSITION TEXT(A) LENGTH(1)",
 "SESSION("OSISESS")"
Chapter 12. Using the IMFEXEC Statements351

SELECT
SELECT
Subject: SELECT

This command invokes an EXEC or a program.

The following table describes the parameters.

Command Parameters

SELECT EXEC(Execname [p1 ... pn])|PGM(Program name)
[PARM('p1 ... pn')]
[PRI(NORMAL|HIGH)]
[WAIT(NO|YES)]
[TARGET(Target system)]

Parameter Function Notes

EXECname Name of EXEC to invoke, including all
parameters

Maximum length is 255 characters. Either
EXEC or PGM must be specified.

PGM The name of a user-written routine stored in
the BBLINK data set on the local BBI-SS
PAS. Refer to “Using Other Programming
Languages” on page 354 for more
information.

The name of the routine must begin with
the prefix IMFUxxxx. Either PGM or
EXEC must be specified.

PARM A list of parameters to be passed to the
program

PRI Execution priority of the EXEC to be
invoked

Either NORMAL or HIGH. Applies only
to EXEC keyword. It overrides
AAOEXP00 parameters. PRI is valid with
WAIT(NO) but not with WAIT(YES). PRI
is ignored with WAIT(YES).
352 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SELECT

nd

o

Note: If you use the IMFEXEC SELECT command to schedule an EXEC and you do not specify a target a
WAIT(YES) is specified, the LOCAL variable pool is shared between the calling EXEC and the called
EXEC.

Condition codes are listed in the following table.

WAIT Suspension criterion for invoking EXEC Either YES or NO. NO causes the EXEC t
be queued for execution using a different
EXEC thread. YES causes the EXEC to
execute under the same thread as the calling
EXEC.

If YES is specified, the invoking EXEC
waits for the invoked EXEC to terminate.
WAIT(YES) is required to retrieve a return
code from the invoked EXEC.

WAIT(YES) is not supported for EXECs
scheduled to a remote system with
TARGET.

If both WAIT and TARGET are specified,
the EXEC is queued to the TARGET

TARGET Identifies the target SS on which the
command will be executed

The name must be defined in the BBPARM
member BBIJNT00 as either the target
name or BBI-SS PAS subsystem ID.

Value Description

0 Command was executed successfully

8 One of the following is true:

• Target specified is not found in BBIJNT00
• EXEC specified but is not found in BBPROC
• Program name length is greater than 8 characters
• Program is not found

12 One of the following is true:

• EXEC name specified is more than 8 characters long
• Program does not start with IMFU

16 Invalid syntax used

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements353

SELECT

 the
m an
 for

 to
ram is
refix

AS

ys 5.

-

S,

he
e APF

as re-
ser

amiliar
riables
Example

This example command invokes the EXEC CHKENQ on the remote SS SYSB, passing it the parameter
SYS2.PROD.XLIB.

This section also contains a discussion about how you can use other programming languages when you use
IMFEXEC SELECT command and how to determine condition codes when you select other program to run fro
EXEC. Refer to “Using Other Programming Languages” on page 354 and “Understanding Completion Codes
EXEC-Initiated EXECs with WAIT(YES) and User Written Programs” on page 355.

Using Other Programming Languages

Programming languages in addition to REXX and CLIST, such as Assembler, PL/I and COBOL, may be used
implement complex automation tasks. These programs are called user-written programs. A user-written prog
called only from an EXEC, is loaded from the BBILOAD library in the BBI-SS PAS, and must begin with the p
IMFUxxxx to prevent a conflict with future AutoOPERATOR program names.

At entry the program will be given a parameter list specifying the name of the EXEC, the originating BBI-SS P
Address Space ID, and the contents of the parameter string.

Parameter Description

WORD1 A count of the number of parameters (to maintain compatibility with PL/I). This number is alwa

WORD2 A pointer to an 8-character field containing the name of the EXEC scheduling the program, left
justified.

WORD3 A pointer to a 4-character field containing the BBI-SS PAS Address Space ID of this BBI-SS PA
left-justified.

WORD4 The length of the parameter string pointed to by WORD5.

WORD5 A pointer to the parameter string.

This program gains control in KEY 8, problem state, and is afforded ESTAE protection by AutoOPERATOR. T
execution of the calling EXEC is suspended until the User-written program terminates. The program inherits th
authorization of the subsystem.

The high-order bit of the last word in the parameter list is set to 1. The program should be coded and link edited
entrant because it could be called from several tasks. If serialization is required, it must be provided by the u
program using ENQ facilities of MVS. The program can be coded to execute in either 24-bit or 31-bit mode.

A user-written program may access and manipulate TSO variables. BMC Software recommends that you be f
with TSO internals before attempting this. One documented programming interface for manipulating TSO va
is the IKJCT441 program.

/* REXX */
"IMFEXEC SELECT EXEC(CHKENQ SYS2.PROD.XLIB) TARGET(SYSB)"
354 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SELECT

 user-

C is

iating
FRC.

lly
cted
ple:
The following describes the register contents on entry to a user-written program:

Register Entry Description

R1 Pointer to the parameter list
R2 - R12 Unpredictable
R13 An 18-word save area
R14 The return address to AutoOPERATOR
R15 The entry-point address of the user exit

The following describes the register contents expected by AutoOPERATOR when control is returned from the
written program.

Register Exit Description

R15 The return code made available to the calling EXEC in the BBI variable &IMFRC

AutoOPERATOR expects the program to return control in problem state, KEY 8. If the program abends, IMFC
set to 20.

Understanding Completion Codes for EXEC-Initiated EXECs with
WAIT(YES) and User Written Programs

Both EXEC-initiated EXECs with WAIT(YES) and user-written programs gain control of the thread while the
execution of the initiating EXEC is suspended. When the execution of the initiating EXEC is resumed the init
EXEC can determine the success of the called EXEC or program by testing the BBI variables IMFCC and IM

If IMFCC is zero, meaning the EXEC (with the WAIT(YES) parameter) or user-written program was successfu
invoked, a separate local variable, IMFRC, will be set with the return code from the program or EXEC. A sele
EXEC with WAIT(YES) can return this value by using the EXIT command. See “EXIT” on page 324. For exam

IMFEXEC EXIT CODE(12)

causes IMFRC to be set to 12 when the calling EXEC receives control.

The following values of IMFCC are valid for SELECTed EXECs and programs:

Value Description

00 Program or EXEC scheduled
08 Program or EXEC not found
20 Severe error
Chapter 12. Using the IMFEXEC Statements355

SEND

#SE.

e

 will be

xt is

ed.

fied.
SEND
Subject: SEND

This command sends a message to a TSO or IMS user.

The following table describes the parameters.

Note: The parameters of the TSO SEND command LOGON, SAVE, WAIT, and so on are not supported. To
perform similar functions, use the AutoOPERATOR IMFEXEC command statement IMFEXEC CMD

Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC SEND command statement. A brief discussion follows th
examples.

Example 1

This command sends a message to the TSO user CWB1. If the user is not currently logged on, the message
discarded.

Command Parameters

SEND 'Msgtext'
LTERM(Terminal)|USER(TSO USERID)

Parameter Function Notes

Msgtext The message to be sent to the user The maximum length of the message te
252 bytes when LTERM is coded;
otherwise, the maximum length is 120
bytes. This includes the SEND ' ' USER()
portion of the command.

LTERM The IMS Lterm to receive the message Either LTERM or USER must be specifi

USER The TSO user ID to receive the message Either LTERM or USER must be speci

Value Description

0 Command was executed successfully

8 Length of command exceeds maximum

12 No destination was supplied

16 Invalid syntax used

/* REXX */
"IMFEXEC SEND 'I AM SENDING YOU THIS MESSAGE' USER(CWB1)"
356 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SEND

ted to.
Example 2

This command sends a message to the IMS LTERM R35769D of the IMS system the BBI-SS PAS is connec

/* REXX */
"IMFEXEC SEND 'I AM SENDING YOU THIS MESSAGE' LTERM(R35769D)"
Chapter 12. Using the IMFEXEC Statements357

SESSINF

I
nd a

D. This
SESSINF
Subject: SESSINF

This command writes OSPI session specific information to the OSPISNAP DD and is used in debugging OSP
EXECs. Information includes the current contents of the buffer image, cursor position and keyboard status, a
SNAP dump of all VTAM data exchange, including the RPL.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

The following table describes the parameters.

Note: The SNAP dump information produced is for BMC Software support purposes only.

Condition codes are listed in the following table.

Example

This example command dumps all session related information designated by IMSSESS to the OSPISNAP D
includes all session variables and the virtual screen image.

Command Parameters

SESSINF SESSION(Session identifier)

Parameter Function Notes

SESSION The session identifier of the session to
display

This identifier is returned by the LOGON
command.

Only one EXEC can use this command at a
time. You must serialize the use of this
command.

Value Description

0 Command was executed successfully

8 Indicates one of the following:

• Invalid syntax was used

• Session not found

/* REXX */
"IMFEXEC VENQ 'BOOLE' EXC"
"IMFEXEC SESSINF SESSION("IMSSESS")"
"IMFEXEC VDEQ 'BOOLE'"
358 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SETTGT

S

ets
SETTGT
Subject: SETTGT

This command resets the EXECs target and adjusts the contents of the IMFSYSID variable.

The following table describes the parameters.

Example

This example command shows how CICS task information is retrieved from the CICSPROD system and CIC
terminal information is retrieved from the CICSTEST system.

Command Parameters

SETTGT 'Target name'

Parameter Function Notes

Target name The system ID of the new target 1-8 alphanumeric characters. Only targ
assigned to the BBI-SS PAS that this EXEC
is currently running on are acceptable.
Valid targets and their BBI-SS PAS
assignments are specified in the BBIJNT00
member of the BBPARM data set. Value
must be enclosed in single quotes.

/* REXX */
"IMFEXEC SETTGT 'CICSPROD'"
"IMFEXEC CICS QUERY TASK"
"IMFEXEC SETTGT 'CICSTEST'"
"IMFEXEC CICS QUERY TERMINAL"

Important Note

The IMFEXEC SETTGT command statement is used for CICS regionsonly. To set a target which is not CICS
region, use:

"IMFEXEC SELECT EXEC(execabc) TARGET(tgtname)"
Chapter 12. Using the IMFEXEC Statements359

SHARE

values
f this

very
 back to
d on

exist
time

XEC.
nd at
SHARE
Subject: SHARE
Scans the LOCAL pool for matching variable names. Every match is recorded. At the end of the EXEC the
for all these matches are gathered and transferred back to the calling EXEC (AOEXEC command). The use o
command is only meaningful in an EXEC that is driven by AOAnywhere.

The following table describes the parameters.

At the time of the IMFEXEC SHARE command, the LOCAL pool is scanned for matching variable names. E
match is recorded and at the end of the EXEC, the values for all these matches are gathered and transferred
the calling EXEC (AOEXEC command). For IMFEXEC SHARE to work, at least one variable has to be specifie
the AOEXEC SELECT SHARE() statement.

For example 'IMFEXEC SHARE (A B C)' causes the EXEC to determine whether variables A, B, or C currently
in the LOCAL pool. If these variables do not exist, NO data is transferred back to the EXEC. If they exist at the
of the command, they are recorded.

Once the EXEC terminates, their values are gathered and set in the function pool of the invoking AOEXEC E
This means that an 'IMFEXEC SHARE(*)' will cause all current variables in the LOCAL pool to be recorded a
EXEC termination, transferred back to the invoking EXEC.

Condition codes are listed in the following table.

Command Parameters

SHARE Variable name|(var1 var2...varn)

Parameter Function Notes

Variable Name of a variable or variables that will
be searched for in the LOCAL variable
pool and transferred back to the calling
EXEC (AOEXEC command).

You can list one variable or a list of
variable names. Multiple variable names
must be enclosed in parentheses.

You can list either fully qualified variable
names or variable name patterns. Patterns
must follow coding conventions such as

• A*B+

• A*

• *

This command overrides any VAR()
parameters specified on the AOEXEC
SELECT statement.

Value Description

12 This EXEC is not running under AOEXEC control. Therefore the IMFEXEC SHARE
statement is inapplicable.

16 Syntax error
360 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SHARE

tes and
ed these
Example

The pattern match happens at the time of the IMFEXEC SHARE statement. If at the time the statement execu
no matches are found in the LOCAL pool but subsequently new variables are created that would have match
variables, nothing is transferred back. For example:

In this example, the variable C is NOT returned to the invoking EXEC.

The following sample code shows how the variable C is returned to the invoking EXEC:

/* REXX */
A=1
B=2
"IMFEXEC VPUT (A B) LOCAL"
"IMFEXEC SHARE (C)"
C=3
"IMFEXEC VPUT (C) LOCAL"

/* REXX */
A=1
B=C
C=3
"IMFEXEC VPUT (A B C) LOCAL"
"IMFEXEC SHARE (C)"
Chapter 12. Using the IMFEXEC Statements361

STDTIME

ime
RATOR
STDTIME

Subject: STDTIME

This command instructs the Elan Workstation to use its modem to obtain the current Universal Coordinated T
(UCT). The current UCT, as well as the local date and time, are returned as variables. Refer to the AutoOPE
Elan Administration Guide for more information.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example sets the system clock using the local time and date obtained by the Elan Workstation.

Command Parameters

STDTIME Values can be:

Var1
Var2
Var3
Var4

Parameter Function Notes

Var1 Name of variable to receive the GMT date

Var2 Name of variable to receive the GMT time

Var3 Name of variable to receive the local date

Var4 Name of variable to receive the local time

Value Description

0 Command was executed successfully

4 A variable name is invalid

8 The request timed out

12 Elan could not execute the request

16 Elan communications were not established

/* REXX */
"IMFEXEC STDTIME V1 V2 LDATE LCLOCK"
"IMFEXEC CMD #SET DATE="LDATE",CLOCK="LCLOCK
362 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

SUBMIT

s are

M

SUBMIT
Subject: SUBMIT

This command submits a job from a data set to MVS for execution in the background. Installation SUBMIT exit
honored.

The user ID associated with the submitted job is the value specified with the PREFIX= parameter of BBPPAR
member AAOEXP00.

The following table describes the parameters.

The following TSO SUBMIT keywords are not supported by IMFEXEC SUBMIT:

• HOLD
• NOHOLD
• NOTIFY
• NONOTIFY
• PASSWORD
• NOPASSWORD
• USER()
• NOUSER

Condition codes are listed in the following table.

Example

This example submits the JCL stream DBREC010 for execution.

Note: The IMFEXEC SUBMIT command works only if it is issued after JES is started.

Command Parameters

SUBMIT 'Data set name'

Parameter Function Notes

Data set name The data set name or name of a member of
a partitioned data set that defines a JCL
stream

A member name of * is not supported. Job
cards cannot be automatically created and
must be supplied within the user submitted
jobstream.

Value Description

0 Command was executed successfully

16 Error, job was not submitted

/* REXX */
"IMFEXEC SUBMIT 'SYSP.PROD.JOBS(DBREC010)'"
Chapter 12. Using the IMFEXEC Statements363

TAILOR

SO
ng
ate a

t of
iew the
TAILOR
Subject: TAILOR

Using skeleton tailoring, you can manipulate the contents of members of partitioned data sets and REXX or T
CLIST variables. Skeleton tailoring reads the member line by line (or examines the variables) while substituti
variable indicators within these lines or variables. At the same time, it follows a number of directives to gener
member of a partitioned data set (or a set of output variables).

Skeleton tailoring can be used for a number of purposes including JCL tailoring. Since its output can be a se
variables and thesevariables can be directly submitted by an IMFEXEC JESSUBM command, you need to rev
feasibility of using the IMFEXEC TAILOR and IMFEXEC JESSUBM command together.

The following table describes the parameters.

Command Parameters

TAILOR MEMIN() | STEMIN()
MEMOUT() | STEMOUT()
[DD()]
[INCLUDE()]
[SEARCH()]
[DEBUG] | NODEBUG]

Parameter Function Notes

DD Name of the DD statement where the
MEMIN() member is read and the
MEMOUT() member is written.

Can be a maximum eight characters in
length and must conform to the DD name
specification.

MEMIN() Name of the PDS member to read Can be a maximum eight characters in
length and must conform to the member
name specification.

Either DD() and MEMIN() or STEMIN()
must be specified. When MEMIN() is
specified DD() must also be specified.
MEMIN() and STEMIN() are mutually
exclusive.

MEMOUT() Name of the PDS member to which the
output is written

Can be a maximum eight characters in
length and must conform to the member
name specification. MEMOUT() and
STEMOUT() are mutually exclusive.

Either DD() and MEMOUT() or
STEMOUT() must be specified. When
MEMOUT() is specified DD() must also
be specified.
364 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR
STEMIN() Variable stem prefix for input lines. This
prefix is followed by a period which is
followed by a number. The "var.0"
contains the count of variables supplied
and var.1 to var.n contain the data input
to the tailor function.

Can be a maximum of 26 characters in
length, and must conform to variable
name conventions.

Either DD() and MEMIN() or STEMIN()
must be specified. When MEMIN() is
specified DD() must also be specified.
MEMIN() and STEMIN() are mutually
exclusive.

The 0 index is assumed to contain the
number of variables to process.

If var.0 is greater than 99999, an error
message will be issued, a non-zero return
code set, and the last variable used will be
var.99999.

INCLUDE() Name of a DD statement from which to
process)INCLUDE directives

Optional, if not specified, no substitutions
are performed.

Can be a maximum eight characters in
length and must conform to the DD name
conventions. This DD statement will be
used for all directives.

SEARCH() Search order used to satisfy variable
references. This parameter defines the
variable pools and the order to process
them.

Optional.
Possible values are
TSO
LOCAL
SHARED
PROFILE

Multiple values can be specified. They
can be combined or separated by commas
or spaces.

The search order is position dependent
and can contains multiple values.

If you specify SEARCH(‘’), no variable
substitution is performed but the
directives are interpreted.

SEARCH() must include TSO if the input
stream uses the)DO directive with an
index specified.

Long variables are not supported.

The default is ‘’, which means no
substitution.
Chapter 12. Using the IMFEXEC Statements365

TAILOR

nt..

.
eam,

ive.
Condition Codes

The following table describes condition codes returned after issuing an IMFEXEC TAILOR command stateme

Examples of Variable Substitution

In the following example, the member Recover is read from the PDS allocated with the DD statement AOJCL
Variable substitution as well as any tailoring processing is performed.When a variable is found in the input str
the TSO pool (followed by the local pool) is searched for the purposes of substitution.

The results of the search are placed into the REXX stem variableTEMPTLR.X.

Note: The total number of output variables must not exceed 99,999.

STEMOUT() Variable stem prefix for output lines. This
prefix is followed by a period which is
followed by a number. The "var.0"
contains the count of variables created
from the TAILOR function, and var.1 to
var.n contain the data lines returned from
the tailor function.

The result of the tailoring processing is
saved into the stem variables. All existing
variables are overwritten and the number
of generated variables is placed into the 0
index. The maximum length is 26
characters and it must conform to the
variable naming conventions.

Either DD() and MEMOUT() or
STEMOUT() must be specified. When
MEMOUT() is specified DD() must also
be specified.

If more than 99999 lines are generated, an
error message will be issued, a non-zero
return code will be set, and the last
variable generated will be var.99999.

DEBUG Traces every line and every pass to the
BBI journal.

Value Description

4 An error occurred while reading input for tailoring from variables or a PDS member.
Messages indicate the specific condition.

8 A catastrophic error processing the input occurred.

12 An error occurred whilewriting output to variables or a PDS member.

16 A syntax error occurred while parsing parameters, such as mutually exclusive or inclus

“IMFEXEC TAILOR DD(AOJCL) MEMIN(RECOVER) SEARCH(TSO LOCAL)STEMOUT(TEMPTLR)”
366 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR

a PDS

nt
ion

ric

he
IMFEXEC TAILOR Processing

The following commands are interpreted in the data passed to the IMFEXEC TAILOR command, either from
or from in-core variables. Note that the control statements are subject to variable substitution processing.

Control Statement Function

)INCL (membername) Reads the contents of the member (member name) and insert it into the curre
skeleton tailoring process. The contents are processed using variable substitut
and processing directives are interpreted. (Member name) can be a variable.

)DO (times) [(x)] Processes the data the number of times indicated by (times). Times is a nume
constant or a variable (including stem variable). For example:
)DO VAR.0 index

The second operand (x) is optional. During processing the variable (x) is set to t
current iteration, beginning with 1.

This control statement enables the iterative processing of multiple variables.

The end of the processing loop is indicated by an)END directive or it is assumed
at the end of the input stream. Nested loops can be used.

When using [(x)], the SEARCH() keyword on the command must include TSO.
See “Example 5” on page 372.

)END Indicates the end of a loop.
Chapter 12. Using the IMFEXEC Statements367

TAILOR

ersand

her

the

ly

r

s

Variable Substitution

A variable is assumed when the variable recognition character is detected. This character defaults to an amp
(&) and can be changed for each member processed through the)DEFAULT directive.

)SUBSTITUTION (ON) |
(OFF)

Turns variable substitution ON or OFF. The)SUBSTITUTION directive can be
followed by one or two parameters. The first parameter must be present and eit
'ON' or 'OFF'. The second parameter (which is optional) can be a valid non-
negative integer in the range from 0 to 99. It specifies the number of variable
scanning passes to perform on every input line. This parameter is equivalent to
count on the DEFAULT statement. The SUBSTITUTION statement can be
specified anywhere in the input stream, whereas the DEFAULT statement is on
valid as the first statement in a member or stem.

You can dynamically change the levels of substitution within the input stream. Fo
example:

)SUBSTITUTION ON 16
some lines1
)SUBSTITUTION ON 2
some lines2
)SUBSTITUTION OFF
some lines3
)SUBSTITUTION ON

Note: The default value of ON is always the last used value. If you use OFF,
then ON (with no number) as in this example, the default value of ON i
2.

In the following example, the default value of ON is 16 (the last used value).

)SUBSTITUTION ON 16
)SUBSTITUTION OFF
)SUBSTITUTION ON

In the following example, the default value of ON is 4 (the last used value).

)SUBSTITUTION ON 16
)SUBSTITUTION OFF 4
)SUBSTITUTION ON

)CM Indicates a comment line. It will be ignored during processing.

)DEFAULT xyzz X: Directive recognition character (default is ‘)’).

Y: Variable recognition character (default ‘is &’).

ZZ: The number of variables substitution passes to perform (two-digits ranging
from 0 to 16).

Note: This directive applies to the current member only. When a member is
included, it temporarily overrides any previous directives in effect. No
variable substitution will be performed for a line containing the this
directive.

Control Statement Function
368 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR

ed by

variable

g less

 the

arated
 first

e length
 the

m.

nto the
ter.
The following three rules apply when processing a line:

1. When a variable is detected in the input stream, it is replaced with its value. A variable is any string preced
an &, which can be overridden by the)DEFAULT directive.

2. The characters that follow the & up to a blank or a slash (\) are assumed to be the variable name. If the
name is followed by a\, the \ is discarded during processing.

3. The contents of a variable string beginning with two ampersand signs (&&x) are assumed to be that strin
one ampersand sign (per substitution pass).

If a variable is not found, nothing is inserted and the variable instruction is discarded, which is comparable to
variable substitution in the Rules Processor.

Optionally, a variable (without intervening blanks or \) can be followed directly by one or two parameters, sep
by colons. These parameters must be constants and must allow for substring processing for the variable. The
parameter indicates the beginning location in the contents of the variable, while the second one designates th
of the substring. If the length of the substring should exceed the actual length of the contents of the variable,
variable will be implicitly truncated.

Example: &VAR:2

Resolves the variable VAR, and inserts its contents beginning with the second character, into the output strea

Example: &VAR:2:3.

Resolves the variable VAR and inserts its contents, beginning with the second character for a length of three, i
output stream. If the variable contents are shorter than four characters, substitution ends with the last charac

Examples of Variable Substitution

The following examples demonstrate processing in increasing complexity.

Example 1

The following TSO variables exist:

The following input stream is processed:

/* rexx */
in.1 = "//JOBA &D1"
in.2 = "//STEP1 EXEC PGM=&D1"
in.3 = "//&D2 DD *"
in.0 = 3
"IMFEXEC TAILOR STEMIN(IN) STEMOUT(OUT) SEARCH(TSO)"

After the TAILOR command, variable OUT.0 would contain 3.
variable OUT.1: //JOBA JOB
variable OUT.2://STEP1 EXEC PGM=JOB
variable OUT.3://SYSIN DD *

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’
Chapter 12. Using the IMFEXEC Statements369

TAILOR
Example 2

The following TSO variables exist:

The following LOCAL variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(LOCAL TSO)

The output stream looks as follows:

//JOBA JOB
//STEP1 EXEC PGM=TEST
//TEST DD *

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

Variable Contents

D2 ‘TEST’
370 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR
Example 3

The following TSO variables exist:

The following input stream is processed:

//JOBA &D1 (3211)
//STEP1 EXEC PGM=&D1
//&D2 DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

///JOBA (3211)
//STEP1 EXEC PGM=
//SYSIN DD *

Example 4

A member CMDBASE exists in BBPARM with the following contents:

COPY INDD(&INDD\) TO OUTDD(&OUTDD\)

The following TSO variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)INCL &CMDBASE

Variable Contents

D2 ‘SYSIN’

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

INDD ‘SYSIN.PARMLIB’

OUTDD ‘MY.PARMLIB’

INCLUDE ‘CMDBASE’
Chapter 12. Using the IMFEXEC Statements371

TAILOR
This stream is processed with the following statement (fragment):

IMFEXEC TAILOR ... SEARCH(TSO)

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
COPY INDD(SYS1.PARMLIB) TO OUTDD(MY.PARMLIB)

Example 5

The following TSO variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)DO 5
CALL PROCESS
)END

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

/JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
CALL PROCESS
CALL PROCESS
CALL PROCESS
CALL PROCESS
CALL PROCESS

Example 6

The following TSO variables exist:

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

P1 ‘VOL003’
372 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR

ing the

, &&P

ters in
The following LOCAL variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)DO 5 WITH INDEX
CALL PROCESS &&P\&INDEX
)END

This stream is processed with the following statement (fragment):

IMFEXEC TAILOR ... SEARCH(TSO LOCAL)

The output stream will look as follows:

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
CALL PROCESS VOL003
CALL PROCESS VOL004
CALL PROCESS VOL005
CALL PROCESS VOL006
CALL PROCESS STOR001

Explanation of DO loop: In this example, the data CALL PROCESS &&P\&INDEX is processed five times.
During these iterations, the variable INDEX is set to the current iteration count. That means the statement dur
first pass is substituted to

CALL PROCESS &P1

Since the contents of a variable beginning with && are assumed to equal the string minus one ampersand sign
has the value of &P.

On the second pass, &P1 is substituted as VOL003.

Substitution passes stop internally when the EXEC detects a truncation of the output that exceeds 80 charac
width, or no more variables to substitute.

Note: The default is two passes, but it can be overridden using the)DEFAULT directive in the input stream.

P2 ‘VOL004’

P3 ‘VOL005’

P4 ‘VOL006’

Variable Contents

P5 ‘STOR001’

Variable Contents
Chapter 12. Using the IMFEXEC Statements373

TAILOR

 the
s the

ted to

8 for

ing
YZ.
Example 7

The following variables are used:

The following input stream is processed:

//XJOB JOB
/STEP1 EXEC PGM=IEFBR14
)DO &DSN.0 INDEX
//DD&INDEX DD DISP=SHR,DSN=&&DSN\.&INDEX\\,VOL=&VOL
)END

A loop is generated. The statements between)DO and)END are executed as many times as the contents of
variable &DSN.0. Every time the loop is executed the variable INDEX is set to the execution count which mean
first time the loop executes, it is set to 1, the next time, it will be set to 2, etc.

The statement

//DD&INDEX DD DISP=SHR,DSN=DSN&&DSN\.&INDEX\\,VOL=&VOL

will execute three times, with the value of the variable INDEX varying from 1 to 3. The)DO statement is transla

)DO 3 INDEX

Explanation of the looped statement

On the first pass it is translated to

//DD1 DD DISP=SHR,DSN=&DSN.1\,VOL=SYSDA

Note that the first \ following&INDEX\\,VOL=&VOL has been discarded according to the rules.

Now the second pass translates it again:

//DD1 DD DISP=SHR,DSN=MY.DATASET,VOL=SYSDA

The same substitution is performed on the second and third iteration. See “Variable Substitution” on page 36
variable processing rules.

When &&XYZ\\ is specified, rule #1 is followed where the name of the variable is defined by looking at the str
following the first & sign, until a blank or \ is detected. Therefore, the actual name of this variable would be &X
This variable can never exist in REXX, nor in CLIST.

Variable Contents

DSN.0= 3

DSN.1 'MY.DATASET’

DSN.2 'YOUR.DATASET’

DSN.3 ‘ANOTHER.DATASET’

VOL ‘SYSDA’
374 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TAILOR

re the

 next
d.
However, following rule number 3, the value of this variable is assumed to be the name of the variable. Therefo
contents of &XYZ actually is &XYZ. The string &&XYZ\\ became &XYZ\ on the first pass.

On the second pass, &XYZ\ is the name of the variable for it is again the string following the & sign up to the
blank or \. The name of the variable becomes XYZ. This variable name is valid and its contents are substitute

See “Variable Substitution” on page 368 for variable processing rules.
Chapter 12. Using the IMFEXEC Statements375

TRANSMIT

is is

not,

ified

N

lly
TRANSMIT
Subject: TRANSMIT

This command responds in an OSPI session to a VTAM application by sending a 3270 input data stream. Th
equivalent to an operator pressing an active (non-local) key on a 3270 terminal keyboard.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

When using this statement, you must remember to code IMFEXEC with the TRANSMIT command. If you do
you might cause the TSO/E TRANSMIT command to be invoked.

The following table describes the parameters.

After a TRANSMIT command, a receive function is implied. After the receive, the virtual screen buffer is mod
with the application's data.

You can query the buffer by coding the VGET command for any of the session variables or by using the SCA
command. Some applications require the explicit use of a RECEIVE command after a TRANSMIT. Refer to
“Interacting with VTAM-Applications with OSPI” on page 113 for more information.

Condition codes are listed in the following table.

Command Parameters

TRANSMIT [ENTER|CLEAR|PFx|PAx]
SESSION(Session identifier)

Parameter Function Notes

Keystroke The key used to transmit the buffer One of the following pools:

• ENTER

• CLEAR

• PFx (where x = 1-24)

• PAx (where x= 1-3)

SESSION Session identifier for session to reference This session identifier is returned initia
through the LOGON command.

Value Description

0 Command responded before wait time expired

8 Session not found
376 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TRANSMIT

y. The
Example

This example command transmits the modified virtual screen back to the host application using the ENTER ke
SESSION keyword designates the referred session.

/* REXX */
"IMFEXEC TRANSMIT ENTER SESSION("OSISESS")"
Chapter 12. Using the IMFEXEC Statements377

TYPE

dified

the

lly
TYPE
Subject: TYPE

This command enters data into the virtual screen image maintained by an OSPI session.

Refer to “Interacting with VTAM-Applications with OSPI” on page 113 for more information about using this
command and OSPI.

The following table describes the parameters.

This command does not transmit any data to the host application. The TRANSMIT command passes the mo
virtual screen buffer back to the application.

Condition codes are listed in the following table.

Command Parameters

TYPE [TAB|BACKTAB|ERASEEOF|HOME|RESET]
[ROW(Row)]
[COL(Column)]
[TEXT(Text)]
SESSION(Session identifier)

Parameter Function Notes

Keystroke A local 3270 function key to type before
entering the text

One of the following:

• TAB
• BACKTAB
• ERASEEOF
• HOME
• RESET

ROW The screen row at which to enter the data Numeric value in the range: 1 - (minus)
maximum number of rows emulated by the
current terminal type.

COL The screen column at which to enter the
data

Numeric value in the range 1-80.

TEXT The text to be entered on the screen Maximum length is 255 characters.

SESSION Session identifier for session to reference This session identifier is returned initia
through the LOGON command.

Value Description

0 Command responded before wait time expired

4 Timeout occurred

8 Session not found
378 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TYPE
Example

This example command tabs to the next input field on the virtual screen before entering the text. The session
addressed by this command is contained in the variable OSISESS.

/* REXX */
"IMFEXEC TYPE TAB TEXT('CATALOG') SESSION("OSISESS")"
Chapter 12. Using the IMFEXEC Statements379

VCKP

ated in
ata

 to

ese
AB01

.

VCKP
Subject: VCKP

This command writes updated profile pool variables to the BBIVARS data set.

Checkpoints for PROFILE variables are taken automatically at EXEC termination if these variables were upd
the EXEC. With VCKP, you can write variables that were updated in the profile pool directly to the BBIVARS d
set on disk at any point in time during EXEC execution.

This is recommended if the EXEC does not terminate for extended periods of dime. Use this when you need
guarantee the integrity of certain variables..

Condition codes are listed in the following table.

Example

This example saves the variables IMSSTART, IMSTIME, and IMSCHKPT in the profile pool. It forces writing th
variables to the BBIVARS data set since the EXEC does not terminate immediately but branches to the label L
(not shown).

Command Parameters

VCKP This command has no parameters.

Value Description

0 Command was executed successfully

20 Invalid syntax used

/* REXX */
"IMFEXEC VPUT (IMSSTAT IMSTIME IMSCHKPT) PROFILE"
"IMFEXEC VCKP"

Presence of the VCKP command within an EXEC’s loop might degrade the performance of the BBI-SS PAS

Important Note
380 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VDCL

ring

is
 of

he data
VDCL
Subject: VDCL

This command equates a variable to a list of TSO variables which are automatically parsed and combined du
VGET and VPUT operations.

The following table describes the parameters.

You cannot directly access a LIST variable but instead, you must reference the individual subcomponents. Th
command is used in conjunction with the IMFEXEC VGET INTO() command and allows for simplified parsing
character strings. There is no corresponding command to reverse the effect of a VDCL.

Condition codes are listed in the following table.

Example

Refer to the List name in the VGET command but refer to the actual variable names when you want to access t
in the list. This command is used in conjunction with the IMFEXEC VGET INTO() command and allows for
simplified parsing of character strings. There is no corresponding command to reverse the effect of a VDCL.

Command Parameters

VDCL List name
LIST(v1 ... vn)

Parameter Function Notes

List name The name of a list of LOCAL or GLOBAL
variables

LIST The names of the TSO variables to be used
in the EXEC

The maximum number of each variable
name is 32 characters. The total length of
the list of TSO variables cannot exceed
255. The maximum number of variables in
the list is 99. Using this statement
redundantly in an EXEC will slow the
EXEC's execution.

Value Description

0 Command was executed successfully

12 Invalid syntax; no variables were passed

/* REXX */
"IMFEXEC VDCL LINE LIST(P1 P2 P3 P4 P5)"
VAR='THIS IS A TEST'
"IMFEXEC VPUT VAR LOCAL"
"IMFEXEC VGET VAR INTO(LINE) LOCAL"
"IMFEXEC MSG '"P1 P2 P3 P4 P5"'"
Chapter 12. Using the IMFEXEC Statements381

VDCL
After execution of these example commands, the contents of the variables are:

THIS IS A TEST .

Note: A list of 99 variables with a total of 256 characters will generate the error message:MORE THAN 99
VARIABLES.
382 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VDEL

ns
VDEL
Subject: VDEL

This command deletes one or more variables from one of the AutoOPERATOR variable pools.

The following table describes the parameters.

Command Parameters

VDEL Variable name |pattern|(v1 ... vn)
[LOCAL|SHARED|PROFILE] TARGET(ssid)

Parameter Function Notes

Variable name
|pattern|(v1 ... vn)

The name of one or more
AutoOPERATOR variables

If more than one variable is specified, the variable
names must be enclosed in parentheses.

The maximum length of this parameter is 252 bytes.
All variables in a pool can be deleted by using the
identifier ALL instead of naming all variables
individually. A variable cannot begin with a numeric
nor can it contain special characters.

An example of using a pattern is:

IMFEXEC VDEL CICS*

The variable names can be generically expressed by
using an asterisk. However, the VDEL command
statement assumes the presence of an asterisk mea
the end of the string.

IMFEXEC VDEL ABC*D

is treated as if you coded:

IMFEXEC VDEL ABC*

In addition, if you try to use an asterisk within a
string of text, you will receive a return code for
invalid syntax usage. For example, if you try to
issue a pattern:

IMFEXEC VDEL CSM*MSG12

you will receive a return code of IMFCC=16 (for
invalid syntax usage).
Chapter 12. Using the IMFEXEC Statements383

VDEL
Note: This command does not affect variables that have already been retrieved from one of the pools.

Condition codes are listed in the following table.

Pool identifier The pool in which the designated
variables reside

One of the following pools:

• LOCAL

• SHARED

• PROFILE

TARGET Allows you specify the BBI-SS PAS
ID of another BBI-SS PAS. You can
then VDEL variables from one
BBI-SS PAS to another BBI-SS
PAS that communicates with it.

The TARGET keyword can be used with IMFEXEC
commands VDEL, VGET, and VPUT.

Value Description

0 Command was executed successfully

8 One of the following conditions is true:

• Variable does not exist

• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 TARGET not found in BBPARM member BBIJNT00

16 Syntax error; TARGET not found in BBPARM member BBIJNT00

20 One of the following conditions is true:

• Severe error (internal) and pool was not found

• Variable overflow

When using the TARGET keyword to VPUT a variable to another target, there is a
limit of (approximately) 7000 bytes of data that can be sent to another target.

Parameter Function Notes
384 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VDEL

LST
Example

This example deletes all variables ending in the characters TEST from the shared variable pool. It uses the V
command to retrieve all variable names.

/* REXX */
"IMFEXEC VLST * SHARED"

DO I = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "LOCAL"
 "IMFEXEC VGET" LINE||N" INTO(DUMMY1) SHARED"
 LEN = LENGTH(VALUE('LINE'I))
 IF LEN > 3 THEN
 IF SUBSTR(VALUE('LINE'I),LEN-3,LEN) = 'TEST' THEN
 "IMFEXEC VDEL" VALUE('LINE'I) "SHARED"
END
Chapter 12. Using the IMFEXEC Statements385

VDELL

LY
th the

t

n

VDELL
Subject: VDELL
This command deletes one or more long variables from one of the AutoOPERATOR variable pools.

Note: This variable operation only supports a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wi
specified name exists, it is ignored.

The following table describes the parameters.

Command Parameters

VDELL [LOCAL| SHARED|PROFILE)]
Variable name|pattern|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the
designated variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE

SHARED is the default.

Variable name|
pattern|(v1 ... vn)

The name of one or more
variables or a pattern.

If more than one variable is specified, the variable names mus
be enclosed in parentheses.

The maximum length of this parameter is 252 bytes. All
variables in a pool can be deleted by using the identifier ALL
instead of naming all variables individually. A variable cannot
begin with a numeric nor can it contain special characters.

An example of using a pattern is:

IMFEXEC VDELL CICS*

The variable names can be generically expressed by using a
asterisk. However, the VDEL command statement assumes
the presence of an asterisk means the end of the string.

IMFEXEC VDELL ABC*D

is treated as if you coded:

IMFEXEC VDELL ABC*

In addition, if you try to use an asterisk within a string of text,
you will receive a return code for invalid syntax usage. For
example, if you try to issue a pattern:

IMFEXEC VDELL CSM*MSG12

you will receive a return code of IMFCC=16 (for invalid
syntax usage).
386 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VDELL

ich
Note: This command does not affect variables that have already been retrieved from one of the pools.

Condition codes are listed in the following table.

Example

The PROFILE pool is searched for a long variable with the name of X. If found it is deleted.

Value Description

0 The variable existed in the target pool and has been deleted.

8 No long variable with this name has been found in the target pool.

12 Attempt to delete a read-only variable (for example, Q-type variable was specified wh
cannot be deleted with VDELL).

16 Syntax error.

20 Variable pool not found (BBIVARS not allocated)

"IMFEXEC VDELL X PROFILE"
Chapter 12. Using the IMFEXEC Statements387

VDEQ

XEC.

table.

rce
VDEQ
Subject: VDEQ

This command issues an MVS Dequeue for a major name of BBIUSER.

The following table describes the parameters.

The VDEQ command returns without errors if the enqueue was already freed by VDEQ issued in the same E
Use this command in conjunction with the VENQ command.

Condition codes and the corresponding return codes (listed in the variable IMFRC) are listed in the following
The IMFRC value represents the return code

Example

This example releases the enqueue on the symbolic resource STARTUP. Other EXECs waiting for this resou
resume processing.

Command Parameters

VDEQ 'Symbolic name'

Parameter Function Notes

'Symbolic name' The minor name of the Dequeue 1-255 alphanumeric characters.

IMFCC
Value

Description IMFRC
Value

Description

0 Enqueue released; no warning applies 0 Enqueue release

4 Enqueue not held or is already released;
warning applies

8 Enqueue not held or already released

16 Syntax error N/A N/A

/* REXX */
"IMFEXEC VDEQ 'STARTUP'"
388 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VENQ

ve

 in the

table.

t

ue

n

VENQ
Subject: VENQ

This command issues an MVS Enqueue for a major name of BBIUSER. It establishes a shared or an exclusi
ENQUEUE for the given parameter.

Use this command whenever access to a particular resource needs to be serialized.

The following table describes the parameters.

The VENQ command returns without errors if the enqueue was already obtained for a previous VENQ issued
same EXEC.

Condition codes and the corresponding return codes (listed in the variable IMFRC) are listed in the following
The IMFRC value represents the return code returned from the actual MVS enqueue macro.

Command Parameters

VENQ 'Symbolic name'
Disposition
TEST

Parameter Function Notes

'Symbolic name' The minor name of the Enqueue 1-255 alphanumeric characters.

Disposition Type of Enqueue to issue Either SHR or EXC.

SHR means the resource can be shared
between tasks in the same address space.
EXC means a task has an exclusive
enqueue and no other tasks can enqueue a
that resource.

TEST Specifies that no ENQ is obtained but the
availability of an ENQ will be tested

A different set of condition codes is
returned if this parameter is used. Refer to
the condition code tables below.

IMFCC
Value

Description IMFRC
Value

Description

0 Enqueue received; no warning applies 0 Enqueue obtained or is obtainable

4 Enqueue already held; warning applies 8 EXEC already has control of the enque

8 Enqueue not obtained; warning applies 14 Previous request for enqueue has bee
made for the same task; the EXEC does not
have control of the enqueue

8 Enqueue not obtained; warning applies 18 Limit for concurrent requests reached

16 Syntax error N/A N/A
Chapter 12. Using the IMFEXEC Statements389

VENQ

nd the

ach

S.

e

e

If you use the parameter TEST with the IMFEXEC ENQUEUE statement, a different set of condition codes a
corresponding return codes (listed in the variable

Examples

This section contains examples using the IMFEXEC VENQ command statement. A brief discussion follows e
example.

Example 1:

This example command establishes a shared ENQUEUE for the name STARTUP.

Example 2:

This example command tests whether the current EXEC can obtain shared access to the resource PRODCIC

IMFCC
Value

Description IMFRC
Value

Description

0 Enqueue obtainable; no warning applies 0 Enqueue obtained or is obtainable

4 Enqueue already held; warning applies 8 EXEC already has control of the enqueu

8 Enqueue not obtainable; error warning
applies

4 Resource not available

8 Enqueue not obtainable; error warning
applies

14 Previous request for enqueue has been mad
for the same task; the EXEC does not have
control of the enqueue

16 Syntax error N/A N/A

/* REXX */
"IMFEXEC VENQ 'STARTUP' SHR"

"IMFEXEC VENQ 'PRODCICS' SHR TEST"
390 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VGET

 pool.

e

VGET
Subject: VGET

This command copies one or more variables from one of the AutoOPERATOR pools into the EXECs function

The following table describes the parameters.

Command Parameters

VGET Variable name|(v1 ... vn)
[INTO(Variable)]
[LOCAL|SHARED|PROFILE]
[DECRYPT(xyz)]
DELIM(',')
TARGET(ssid)

Parameter Function Notes

Variable name|(v1 ...
vn)

The name of one or more variables to copy If more than one variable is specified, th
variable names must be enclosed in
parentheses.

Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

INTO An optional keyword that you can use in
conjunction with the VDCL command to
map a string of characters into a list of
individual variables

The variable to receive the values should
have been declared with the IMFEXEC
VDCL statement.

Pool identifier The pool in which the designated variables
reside

One of the following pools:

• LOCAL

• SHARED

• PROFILE
Chapter 12. Using the IMFEXEC Statements391

VGET
Condition codes are listed in the following table.

DECRYPT(xyz) Specifies a character string that can be used
for decrypting variable contents

 This parametermust be used in
conjunction with the ENCRYPT parameter
on an IMFEXEC VPUT command at the
same time. If this is not done, the contents
of the data will not match.

The character string can be 2-255
characters long.

Enclose the character string in single quote
marks if the string contains blanks.

Only individual variables can be decrypted.
List variables cannot be decrypted.

Refer to “VPUT” on page 399 for
information about the ENCRYPT
parameter.

DELIM(',') Allows you to specify characters (instead of
blanks) to delimit words or characters into
separate variables

 Blank is the default.

TARGET Allows you specify the BBI-SS PAS ID of
another BBI-SS PAS. You can then VGET
variables from one BBI-SS PAS to another
BBI-SS PAS that communicates with it.

The TARGET keyword can be used with
IMFEXEC commands VDEL, VGET, and
VPUT.

Value Description

0 Command was executed successfully

8 One of the following is true:

• Variable does not exist

• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 TARGET not found in BBPARM member BBIJNT00

16 Node not available

20 One of the following conditions is true:

• Severe error (internal) and pool was not found

• Variable overflow

When using the TARGET keyword to VPUT a variable to another target, there is a
limit of (approximately) 7000 bytes of data that can be sent to another target. This
includes both the variable name and variable value.

Parameter Function Notes
392 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VGET

ach

ve the

data
er

rs.
Examples

This section contains examples using the IMFEXEC VGET command statement. A brief discussion follows e
example.

Example 1

This example displays the contents of the EXECs SHARED variable pool. It uses the VLST command to retrie
names of all variables in that pool.

It then VGETs them one after the other and displays their contents.

Example 2

The VDCL command specifies that CICSL20 is a list of 12 variables, V1 to V12. The VGET command maps the
returned for LINE20 into the 12 variables. The local variables, V1 through V12, can now be processed by oth
commands within the EXEC.

Example 3

This is an example of how to use the IMFEXEC VPUT ENCRYPT and IMFEXEC VGET DECRYPT paramete
Notice how both parameters specify('DATASTREAM'). This is done to ensure that when the variable ABC is
decrypted, the contents of the variable will be accurate.

/* REXX */
"IMFEXEC VLST * SHARED"

DO I = 1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC VGET" VALUE('LINE'I) "SHARED"
 "IMFEXEC MSG '.."VALUE(VALUE('LINE'I))"'"
END

/* REXX */
"IMFEXEC VDCL CICSL20 LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12)"
"IMFEXEC VGET LINE20 INTO(CICSL20) LOCAL"

/* REXX */
ABC=SUBSTR(THIS IS A DATA ENCRYPTION EXAMPLE)
"IMFEXEC VPUT ABC SHARED ENCRYPT('DATASTREAM')"
"IMFEXEC VGET ABC SHARED DECRYPT('DATASTREAM')"
Chapter 12. Using the IMFEXEC Statements393

VGETL

LY
th the

 It is
VGETL
Subject: VGETL
This command copies one or more long variables from one of the AutoOPERATOR pools into the TSO pool.

Note: This variable operation only supports a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wi
specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Examples

The PROFILE pool is searched for a long variable with the name of X. If found it is placed into the TSO pool.
then assigned to the variable Y.

Command Parameters

VGETL [LOCAL|SHARED|PROFILE)]
Variable name|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE

SHARED is the default.

Variable name|(v1 ...
vn)

The name of one or more variables Required parameter.

If more than one variable is specified, the
variable names must be enclosed in
parentheses.

Each variable name can be up to 30
characters. The maximum length of the
combined variable values is 252 bytes

Value Description

0 The variable existed in the target pool and has been retrieved.

8 No long variable with this name has been found in the target pool.

16 Syntax error

20 Variable pool not found (BBIVARS not allocated)

"IMFEXEC VGETL X PROFILE"
y=x
394 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VLST
VLST
Subject: VLST
This command lists variable names defined in the AutoOPERATOR pools. It returns those names in LOCAL
variables LINE1 through LINEn and sets IMFNOL to the count of LINEs.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VLST Variable pattern
[SHARED | PROFILE | REXX]

Parameter Function Notes

Variable pattern The name or name pattern for specifying
variable names to retrieve

The variable names can be generically
expressed by using an asterisk.

Pool identifier The pool in which the designated variables
reside

One of the following pools:

• SHARED

• PROFILE

• REXX

Value Description

0 Command was executed successfully

8 No variable was found

12 Variable pool is not available
Chapter 12. Using the IMFEXEC Statements395

VLST

nd
inal.
Example

The following EXEC uses the IMFEXEC VLST command to retrieve all the variables that begin with RETRY a
then reports the number of retries. The variable RETRY.termname will contain the number of retries for a term

/* REXX */
/***/
/* THIS EXEC WILL PRINT RETRY COUNTS FOR ALL TERMINALS */
/***/

 "IMFEXEC VLST RETRY* SHARED"
 IF IMFCC > 0 THEN EXIT

 "IMFEXEC VDCL DUMMY1 LIST(VARNAME)"
 "IMFEXEC VDCL DUMMY2 LIST(DATE COUNT)"

 DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "INTO(DUMMY1) SHARED"
 "IMFEXEC VGET" VALUE(VARNAME) "INTO(DUMMY2) SHARED"
 END = LENGTH(VARNAME)
 NOD = SUBSTR(VARNAME,7,END-7)
 "IMFEXEC MSG '*TERMINAL:" NOD "RETRIES: "COUNT"'"
 END
 "IMFEXEC VDEL RETRY* SHARED"
396 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VLSTL

LY
th the
VLSTL
Subject: VLSTL
This command retrieves a long variable from the specified pool and places it intot he TSO pool.

Note: This variable operation only supports a subset of the functions available for the short variables. It ON
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) wi
specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VLSTL [SHARED|PROFILE]
Variable pattern

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE

SHARED is the default.

Variable pattern The name or name pattern for specifying
variable names to retrieve

Required parameter.

Only one variable can specified and the
name must be enclosed in parentheses.

Each variable name can be up to 30
characters.

The variable name can be a pattern:

(A+B*)

where the following wildcards are
supported:

+ (plus sign)
Matches any one character.

* (asterisk)
Matches zero to any number of
characters.

Value Description

0 At least one variable has been found.

8 No long variable with this name has been found in the target pool.
Chapter 12. Using the IMFEXEC Statements397

VLSTL
Example

This EXEC lists all long variables in the SHARED pool and writes their names to the terminal.

16 Syntax error

20 Variable pool not found (BBIVARS not allocated)

/* REXX */
"IMFEXEC VLSTL * SHARED"
say IMFNOL
do i=1 to IMFNOL
 say value('LINE'I)
end
398 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VPUT

pools.

e

VPUT
Subject: VPUT

This command copies one or more variables from the EXECs function pool into one of the AutoOPERATOR

The following table describes the parameters.

Command Parameters

VPUT Variable name|(v1 ... vn)
[FROM(Variable name)]
[LOCAL|SHARED|PROFILE]
[USING(v1 ... vn)]
[ENCRYPT(xyz)]
TARGET(ssid)

Parameter Function Notes

Variable name|(v1
... vn)

The names of one or more variables to copy If more than one variable is specified, th
variable names must be enclosed in
parentheses.

Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

FROM An optional keyword that you can use in
conjunction with the VDCL command to
map a string of characters into a list of
individual variables

The list is created by IMFEXEC VDCL.

Pool identifier The pool to which the designated variables
should be placed

One of the following pools:

• LOCAL

• SHARED

• PROFILE

USING An optional keyword that, when used with
AutoOPERATOR variables, allows you to
set the AutoOPERATOR variables from the
LOCAL variable pool

For example:

IMFEXEC VPUT (A B C)USING (X Y Z)

allows the AutoOPERATOR variables A,
B, and C be set to the TSO variable
contained in X, Y, and Z.
Chapter 12. Using the IMFEXEC Statements399

VPUT
Condition codes are listed in the following table.

ENCRYPT(xyz) Specifies a character string that can be used
for encrypting variable contents

 This parametermust be used in
conjunction with the DECRYPT parameter
on an IMFEXEC VGET command at the
same time. If this is not done, the contents
of the data will not match.

The character string can be 2-255
characters long.

Enclose the character string in single quote
marks if the string contains blanks.

Only individual variables can be encrypted.
List variables cannot be encrypted.

Refer to “VGET” on page 391 for
information about the DECRYPT
parameter.

TARGET Allows you specify the BBI-SS PAS ID of
another BBI-SS PAS. You can then VPUT
variables from one BBI-SS PAS to another
BBI-SS PAS that communicates with it.

The TARGET keyword can be used with
IMFEXEC commands VDEL, VGET, and
VPUT.

Value Description

0 Command was executed successfully

4 Variable did not previously exist in the designated pool

8 One of the following is true:

• Invalid syntax used

• When VPUTting a variable to the PROFILE pool, the PROFILE pool data set
BBIVARS is full

• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 One of the following is true:

• Q-type variable was specified and cannot be VPUT

• TARGET not defined in BBPARM member BBIJNT00

Parameter Function Notes
400 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VPUT

ach

rs.
Examples

This section contains examples using the IMFEXEC VPUT command statement. A brief discussion follows e
example.

Example 1

This example command saves the current value ofABENDS, ABENDCOUNT, andABENDREASON in the shared pool.

Example 2

This example command saves the current value ofABENDS in the local pool.

Example 3

This is an example of how to use the IMFEXEC VPUT ENCRYPT and IMFEXEC VGET DECRYPT paramete
Notice how both parameters specify('DATASTREAM'). This is done to ensure that when the variable ABC is
decrypted, the contents of the variable will be accurate.

16 One of the following is true:

• Internal error

• Node not available and TARGET is used

20 One of the following conditions is true:

• No variables in list

• Variable name is invalid

• Variable overflow

When using the TARGET keyword to VPUT a variable to another target, there is a
limit of (approximately) 7000 bytes of data that can be sent to another target. This
includes both the variable name and variable value.

/* REXX */
"IMFEXEC VPUT (ABENDS ABENDCOUNT ABENDREASON)"

/* REXX */
"IMFEXEC VPUT ABENDS LOCAL"

/* REXX */
ABC=SUBSTR(THIS IS A DATA ENCRYPTION EXAMPLE)
"IMFEXEC VPUT ABC SHARED ENCRYPT('DATASTREAM')"
"IMFEXEC VGET ABC SHARED DECRYPT('DATASTREAM')"

Value Description
Chapter 12. Using the IMFEXEC Statements401

VPUTL

 If a
VPUTL
Subject: VPUTL
This command creates a or sets a long variable from a variable in the TSO pool.

Note: This variable operation only supports a subset of the functions available for the short variables. For
example, no target system functionality is provided. It ONLY affects and searches for long variables.
short variable (created with VPUT instead of VPUTL) with the specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VPUTL [LOCAL|SHARED|PROFILE)]
Variable name|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE

SHARED is the default.

Variable name|(v1 ... vn) The name of one or more variables Required parameter.

Each variable name can be up to 30
characters. The maximum length of the
combined variable values is 252 bytes.

Variables beginning with the character Q
are reserved for system variables and
may not be modified.

Value Description

0 The variable existed in the target pool and has been overwritten.

4 The variable did not exist in the pool and has been created.

8 Error during operation. Possible Out-of-Space condition for the PROFILE pool.

12 Attempt to set a read-only variable (for example, Q-type variable was specified which
cannot be VPUT).

16 Syntax error

20 Variable pool not found. BBIVARS not allocated.
402 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

VPUTL
Examples

a='This is a test'
"IMFEXEC VPUTL A SHARED"
Chapter 12. Using the IMFEXEC Statements403

WAIT

her

C

WAIT
Subject: WAIT

This command suspends EXEC execution for a specified interval or until a value (or name) is posted by anot
EXEC using the IMFEXEC POST command statement.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command pauses the EXEC for 15 seconds or until the name TOKEN is posted by the IMFEXE
POST command statement in another EXEC. The EXEC processing thread remains in use.

/* REXX */
"IMFEXEC WAIT 15 NAME(TOKEN)"

Command Parameters

WAIT n

NAME (name)

Parameter Function Notes

Interval Number of seconds to suspend execution Numeric value in the range 1-9999.

NAME Use this parameter with the NAME
parameter in the IMFEXEC POST
command statement

Can be 1-32 alphanumeric characters long.

This parameter allows you to halt execution
of the EXEC until either the wait time
expires or until the NAME parameter in an
IMFEXEC POST command is posted.
Refer to “POST” on page 344 for
additional information.

Value Description

0 Command was executed successfully. (If WAIT on NAME and INTERVAL did not
expire.)

8 Attempted WAIT on NAME timed out.

16 Syntax Error
404 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

WAITLIST

xx.

tains
WAITLIST
Subject: WAITLIST

This command returns the IDs of EXECs in WAIT mode to the LOCAL pool in variables EXEC1 through EXECx
In addition:

• The variables LINE1 through LINExxx contain the names of the resources and the variable IMFNOL con
the number of lines returned

• The variables NAME1 through NAMExxx contain the names of EXECs

• The variables DATE1 through DATExxx contain the date when an EXEC started

• The variables TIME1 through TIMExxx contain the time they started

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

WAITLIST pattern

Parameter Function Notes

pattern Is the resource name that is being waited on

This parameter is not optional. You can use
wildcard characters (such as * or +) where
an asterisk represents one or more
characters and a plus sign represents a
single character.

1-32 alphanumeric characters.

LINE1 through LINExxx and EXEC1
through EXECxxx are LOCAL pool
variables and IMFNOL is a TSO variable.
IMFNOL is valid only if the return code is
0.

The variables NAME1 through NAMExxx
contain the names of EXECs.

The variables DATE1 through DATExxx
contain the date when an EXEC started.

The variables TIME1 through TIMExxx
contain the time the EXEC(s) started.

Value Description

0 The names of one or more waiting EXECs and associated resources were returned

4 No waiting EXECs were returned

8 The parameter was not specified

12 Syntax error
Chapter 12. Using the IMFEXEC Statements405

WAITLIST

EC
Example

This example issues the WAITLIST command to display the names of the EXECs that are awaiting an IMFEX
POST. The names of the EXECs, dates and times are displayed in the BBI-SS PAS Journal.

/* REXX */
"IMFEXEC SELECT EXEC(WAIT MOO)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT GAV)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT MEW)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT KWA)WAIT(NO)"
"IMFEXEC WAIT 3"
"IMFEXEC WAITLIST *"
"IMFEXEC MSG 'WTEST.'"
"IMFEXEC MSG 'WTEST.DATE:" date() " TIME:" time()"'"
"IMFEXEC MSG 'WTEST.IMFCC = "IMFCC "'"
"IMFEXEC MSG 'WTEST.IMFRC = "IMFRC "'"
"IMFEXEC MSG 'WTEST.IMFNOL =" imfnol "'"
"IMFEXEC MSG 'WTEST.RESOURCE",
 " EXEC ID NAME DATE TIME STARTED'"
do n = 1 to imfnol
 "IMFEXEC VGET LINE"n "LOCAL"
 "IMFEXEC VGET EXEC"n "LOCAL"
 "IMFEXEC VGET NAME"n "LOCAL"
 "IMFEXEC VGET DATE"n "LOCAL"
 "IMFEXEC VGET TIME"n "LOCAL"
 r1 = value("LINE"n);r = left(r1,10)
 r1 = value("EXEC"n);r = r left(r1,9)
 r1 = value("NAME"n);r = r left(r1,9)
 r1 = value("DATE"n);r = r left(r1,9)
 r1 = value("TIME"n);r = r left(r1,9)
 "IMFEXEC MSG 'WTEST."r"'"
end
"IMFEXEC POST 'MOO'"
"IMFEXEC POST 'GAV'"
"IMFEXEC POST 'MEW'"
"IMFEXEC POST 'KWA'"
"IMFEXEC MSG 'WTEST.'"
return
406 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

WTO
WTO
Subject: WTO

This command sends a message to one or more system consoles.

The following table describes the parameters.

Command Parameters

WTO 'Msgtext'
[JOBID(n)]
[ROUTCDE(n1 ... nn)]
[DESC(n1 ... nn)]
[CONSOLE|CN(n)]
[SSID(YES|NO)]
[NAME(x)]

Parameter Function Notes

Msgtext The text of the message to send Maximum length is 126 characters with
SSID defaulting to NO; if SSID is YES,
maximum length is reduced to 119.

JOBID Job identifier to place in SYSLOG as
message issuer

1-8 characters alphanumeric, first character
alpha.

ROUTCDE Routing codes to associate with the
message

Refer to the IBM publication,Routing and
Descriptor Codes, for more information.

DESC Descriptor codes to associate with the
message

Refer to the IBM publication,Routing and
Descriptor Codes, for more information.

CONSOLE
CN

Specific Console ID of console to receive
the message

Numeric identifier.

You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit the
CONSOLE|CN and NAME keywords, the
system uses the routing code specified on
the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.

SSID Appends the subsystem ID to the end of the
message

Either YES or NO.

NAME A valid console name to where the message
is sent

You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit the
CONSOLE|CN and NAME keywords, the
system uses the routing code specified on
the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.
Chapter 12. Using the IMFEXEC Statements407

WTO

um

ges
Condition codes are listed in the following table.

Value Description

0 Command was executed successfully. The variable IMFWTDOM contains the DOM ID
for this WTO. You may need to use this value in a later invocation of the IMFEXEC DOM
command to delete the message again.

4 Set when the WTOR is issued with Msgtext truncated because it exceeded the maxim
length.

8 Set when invalid syntax is detected. These errors are flaged by TSO/E IKJxxxxx messa
or by AutoOPERATOR short error messages or both.
408 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

WTO

ch

gh the
Examples

This section contains examples using the IMFEXEC WTO command statement. A brief discussion follows ea
example.

Example 1

This example command sends a message to the system console with the current date and time passed throu
symbolic TSO built-in functions, DATE() and TIME().

Example 2

This example sends the message to specific destinations.

/* REXX */
"IMFEXEC WTO '- "DATE() TIME() "NCP IS COMING DOWN IN 5 MINUTES'"

/* REXX */
"IMFEXEC WTO 'SHIFT CHANGE AT 6PM' ROUTCDE(1 5 14) DESC(1)"
Chapter 12. Using the IMFEXEC Statements409

WTOR
WTOR
Subject: WTOR

This command sends a message to one or more system consoles and returns an operator reply.

The following table describes the parameters.

Command Parameters

WTOR 'Msgtext'
[JOBID(n)]
[ROUTCDE(n1 ... nn)]
[DESC(n1 ... nn)]
[CONSOLE|CN(n)]
[NAME(x)
REPLY(Variable name)
[WAIT(n)]
[SSID(YES|NO)]

Parameter Function Notes

Msgtext The text of the message to send Maximum length is 122 characters with
SSID defaulting to NO; if SSID is YES,
maximum length is reduced to 121.

JOBID Job identifier to place in SYSLOG as
message issuer If the JOBID parameter is
not specified, the IMFEXEC WTOR
command defaults to the JES job identifier
for the AutoOPERATOR subsystem.

1-8 characters alphanumeric, 1st character
alpha.

ROUTCDE Routing codes to associate with the
message.

Refer to the IBM publication,Routing and
Descriptor Codes, for more information.

Refer to the IBM publicationOS/390 MVS
Initialization and Tuning Reference for
information about CONSOLxx.

DESC Descriptor codes to associate with the
message

Refer to the IBM publication,Routing and
Descriptor Codes, for more information.
However, only the descriptor codes of 7 and
13 or both may be specified for a WTOR.

CONSOLE
CN

Specific Console ID of console to receive
the message

Numeric identifier.

You can specify NAME() or CONSOLE(),
but you can not specify both. If you omit
the CONSOLE|CN and NAME keywords,
the system uses the routing code specified
on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.

Refer to the IBM publicationOS/390 MVS
Initialization and Tuning Reference for
information about CONSOLxx.
410 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

WTOR

 S, the

um

ges
s

Routing codes and descriptor codes are documented in the IBM publication,Routing and Descriptor Codes.
However, only the descriptor codes of 7 and 13 or both may be specified for a WTOR.

Condition codes are listed in the following table.

Example

The below example issues a WTOR. If the operator does not respond within 60 seconds or responds with an
CLIST branches to label STARTNET. Otherwise, execution continues sequentially.

Some common options are dependent.

NAME Specific name of console to receive the
message

This parameter is optional.

You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit the
CONSOLE|CN and NAME keywords, the
system uses the routing code specified on
the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.

REPLY The variable name that receives the
operators’ reply

1-32 alphanumeric characters.

WAIT The number of seconds to wait for the
operators’ reply

If not specified, the EXEC will wait
indefinitely.

SSID Appends subsystem identifier to the end of
the message

Either YES or NO.

Value Description

0 Command was executed successfully

4 Set when the WTOR is issued with Msgtext truncated because it exceeded the maxim
length or when an invalid descriptor code is received.

8 Set when invalid syntax is detected. These errors are flaged by TSO/E IKJxxxxx messa
or by AutoOPERATOR short error messages or both, or when the WAIT() interval expire
because no reply was received.

/* REXX */
"IMFEXEC WTOR 'NETWORK COMING UP IN 1 MINUTE, REPLY ""S"" TO STOP'",
"WAIT(60),REPLY(REP)"
IF IMFCC = 8 THEN SIGNAL STARTNET
IF REP ^= 'S' THEN SIGNAL STARTNET

Parameter Function Notes
Chapter 12. Using the IMFEXEC Statements411

WTOR
412 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

u

ge
ules
es in

ay

ns
lved.
can

ds

ing
ges

ity
Chapter 13. Testing and Debugging EXECs Interactively

This chapter describes testing EXECs with the AutoOPERATOR EXEC Testing and
Debugging Facility.

Introduction

This section briefly introduces AutoOPERATOR EXECs and describes why and when yo
might use them.

Why Use AutoOPERATOR EXECs

The initial phase of implementing automation at most sites includes tasks such as messa
suppression or message rewording. You can simply automate these tasks by creating R
with the AutoOPERATOR Rules Processor applications. Refer to the chapters about Rul
theMAINVIEW AutoOPERATOR Basic Automation Guide for more information.

As automation becomes more complex, you may find that you need more tools that are
provided by a programming language. AutoOPERATOR EXECs provide an extensive
programming language that comes in two formats: IBM REXX and IBM TSO CLIST.
Although AutoOPERATOR has expanded the scope of automation through Rules, you m
find that some automation tasks require the use of AutoOPERATOR EXECs.

With AutoOPERATOR EXECs and other facilities such as the Rules Processor applicatio
and the ALERT Management Facility, almost every automation related problem can be so
Information about the Rule Processor applications and the ALERT Management Facility
be found in theMAINVIEW AutoOPERATOR Basic Automation Guide.

What AutoOPERATOR EXECs Are

AutoOPERATOR REXX and CLIST EXEC formats contain a customized set of comman
called IMFEXEC commands that address a variety of problems pertaining to data center
automation.

As with every programming language, writing AutoOPERATOR EXECs introduces a learn
curve and extends the development-testing-debugging cycle. Some programming langua
offer debuggers to shorten this cycle. AutoOPERATOR provides the EXEC Testing Facil
that allows you to interactively test your AutoOPERATOR EXECs.
Chapter 13. Testing and Debugging EXECs Interactively411

red,

ial
What the EXEC Testing Facility Provides

The EXEC Testing Facility includes many common debugging features such as:

• Real-time execution control

• Variable read/write access

• The establishment of breakpoints (an instruction in the program which, when encounte
suspends execution and returns control to the tester)

Using the testing facility, you can review and change the state of the program or its
environment during processing, or you can terminate the test altogether. You can debug
EXECs in a non-standalone system so the EXEC Testing Facility also incorporates spec
precautions to safeguard the status of the production system.

The following sections introduce the general concepts of the EXEC Testing Facility and
describe how to use the facility to debug AutoOPERATOR EXECs. A short example
demonstrating different functions is also provided.
412 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ug

ws
ions

 the

m and

port,
e its

not

ou

f all
.

C
C

o

Overview

The EXEC Testing Facility provides a full-screen interactive interface you can use to deb
AutoOPERATOR EXECs. During testing, the execution of the EXEC is totally under your
control. At all times, it displays the EXEC with the current statement highlighted and allo
you to see immediately information such as variable values and the states of OSPI sess
which would otherwise take time to obtain.

Two primary display formats are supplied: one for the less experienced user and one for
more experienced developer.

What Breakpoints Are

Breakpoints are spots you can set within an EXEC that suspend execution of the progra
allow you to control the EXEC.

Scenario: An EXEC gathers data in the first hundred lines of its code and VPUTs these
variables to the LOCAL variable pool. The EXEC retrieves these variables, produces a re
and terminates. Suppose you find that the report seems to contain errors and you believ
because the LOCAL variables were set incorrectly.

The problem is that LOCAL variables are deleted when the EXEC terminates so you can
verify how the variables were set. With the testing facility, you can stop the EXECbefore the
report is produced. Now, you can review the variables’ settings and perhaps find that that y
have to change the EXEC to produce the desired results.

This approach is preferable to creating a loop within the program that writes the contents o
variables to the AutoOPERATOR log, especially if there are a lot of variables in question

Division of Breakpoints

Breakpoints are divided into two groups:Unconditional andConditional.

“Minimizing EXEC Processing Time” on page 104describes how to use the MVS Virtual
Lookaside Facility to minimize the amount of CPU used by EXECs. The EXEC Testing
Facility does not allow you to test EXECs stored in VLF cache more than once per SS
session.

The first time you attempt to test an EXEC, the Testing Facility gets control of the EXE
with TSO OPEN SYSPROC and the test is run. However, if you attempt to test the EXE
a second time, EXEC will be scheduled and the Testing Facility isbypassed.

This occurs because once the EXEC is read into the VLF cache, the EXEC Testing
Facility cannot get control over the execution of the EXEC. For more information, refer t
“Minimizing EXEC Processing Time” on page 104.

Important Note
Chapter 13. Testing and Debugging EXECs Interactively413

ans
 you

r it to

, they

s for

e
utine
lways

use

ne

le

s

Unconditional Breakpoints

Unconditional breakpoints cause an EXEC to always suspend execution before or after a
statement.

You can set unconditional breakpoints before or after any IMFEXEC statement. This me
that whenever the EXEC encounters an unconditional breakpoint, the program stops and
have control of the EXEC. The program remains suspended until you issue a command fo
resume processing.

Conditional Breakpoints

Conditional breakpoints are not associated with a particular program statement. Instead
can be associated with the contents of one or more variables. These breakpoints may be
combined using Boolean operators (such as and, or, and/or). There are many application
this type of breakpoint.

For example, you might have a program that produces a report on all DASD devices in th
system. An inner loop obtains information for one device at a time and then calls a subro
to print a status line. Suppose the status for one device, for example unit address AFC, a
seems to be incorrect.

Setting an unconditional breakpoint at the beginning of the subroutine is not helpful beca
the breakpoint is met for every device and your data center may have hundreds of DASD
devices.

The better solution is to:

• Locate the variable containing the current unit address for which reporting is to be do

• Establish a conditional breakpoint that suspends program execution when this variab
contains the value AFC

• Restart the program

Setting a conditional breakpoint causes the program to stop whenever processing for thi
device is about to begin and you can review surrounding code.
414 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ut no
 and

EST
ools
hile

n

 the
ool,
e

being

ws
PI

pt,
es
C in

fore

eded
 no

ith
How to Use Variables

Special precautions have been taken so that an EXEC being tested has VGET access b
VPUT/VDEL access to PROFILE and SHARED variables. This is because the PROFILE
SHARED variables may be in use and shared by other EXECs in production.

Therefore, an EXEC being tested possesses two additional variable pools: the PROFILE T
and SHARED TEST pool. These two pools are logically concatenated ahead of the live p
so that VGET requests may be satisfied from the actual SHARED and PROFILE pools w
VPUT and VDEL requests are always directed to the test pools.

However, these new pools now create a problem in the following scenario.

Scenario: Assume variable ABC exists in the SHARED pool prior to the debugging of a
EXEC. When the EXEC initially VGETS its value, the test pool is searched first. Because
variable ABC is not in the test pool, it is retrieved from the SHARED pool. Subsequently,
EXEC issues a VDEL ABC SHARED command. This removes the variable from the test p
but does not access the live pool. If another VGET ABC SHARED statement follows in th
EXEC, the variable would be retrieved from the SHARED pool again which would be the
incorrect thing to do.

To protect against this scenario, the EXEC Testing Facility maintains a list of all DELETE
requests for the variables in the SHARED and PROFILE pool and checks this list before
attempting to retrieve a value from either of these pools. Note while this eliminates the
dilemma described above it may also be confusing because another EXEC which is not
tested might access the variable.

Using the EXEC Testing Facility with OSPI EXECs

The Open Systems Procedural Interface allows EXECs to interact with applications that
usually exchange information only with physical terminals. The EXEC Testing Facility allo
you to determine the state of OSPI sessions which can help you determine why your OS
EXEC is not working.

Scenario: Assume an OSPI EXEC logs on to a TSO user ID. At the TSO READY prom
you enterPDF to invoke ISPF/PDF. At some point, the EXEC begins issuing error messag
indicating that you attempted to enter data into a protected field. You can invoke the EXE
the testing facility and stop the EXEC with an unconditional breakpoint set immediately be
the statement causing the error.

With the EXEC interrupted, you can display and examine the current buffer image of the
EXEC. You may find that the amount of broadcast messages received during logon exce
one screenful and if the EXEC code does not take this possibility into consideration then
input fields existed to enter the PDF command.

A variable that has been deleted from the SHARED or PROFILE pool using explicit or
pattern matching means that it still exists in those pools but all attempts to access it w
VGET or VPUT commands are treated as if it had actually been removed.

Important Note
Chapter 13. Testing and Debugging EXECs Interactively415

an be
you
es

C
ffect
e of

es
C is

EC
ing
tory
ation,
 379
uffer

ay
d to

 an
time

tion.
t a
d in
ent

nd
How to Use the IMFEXEC BKPT Statement

EXECs containing large amounts of logic code may be hard to debug since breakpoints c
set only at IMFEXEC statements. If an EXEC does not include any of these commands,
have control of the EXEC only upon entry. To solve this problem, AutoOPERATOR includ
the IMFEXEC BKPT statement.

The IMFEXEC BKPT statement works only when the EXEC is being tested with the EXE
Testing Facility. When the EXEC is scheduled any other time, the statement produces no e
and does not perform any function. IMFEXEC BKPT also does not change the current valu
IMFCC.

For testing purposes, you can set breakpoints with IMFEXEC BKPT in the EXEC where
normally no IMFEXEC statement would be found. The IMFEXEC BKPT statement impos
minimal overhead and it does not impact the performance of the EXEC so when the EXE
moved into production, these statements, like comments, do not need to be removed.

How to Trace the Execution of the EXEC

The EXEC Testing Facility produces a history of the Another feature of the EXEC Testing
Facility is the ability to review the execution history of the tested EXEC. Sometimes, an EX
may branch to a particular statement and it is not apparent how it got there. The debugg
trace contains, among other things, all recently executed IMFEXEC statements. This his
provides a good indication about the logic path the program has taken. The trace inform
similar to system traces, is maintained in a wrap-around buffer and wraps after collecting
lines of data. This means the most recent information is always available and the trace b
never runs out of storage.

What to Set Up Before Using the EXEC Testing Facility

Before any EXECs can be tested, a minimum of setup work is required. These EXECs m
require that the IMFxxxx variables contain certain values or that parameters being passe
the EXEC are present.

This setup work is relatively straightforward but may be time-consuming. In many cases,
EXEC requires more than one iteration of the coding-debugging cycle, during which the
spent for test setup can become significant.

To speed up this process, a SAVE feature has been built into the variable related applica
SAVE allows all TSO variables to be saved with their current values and to be retrieved a
later point in time while debugging either the same or any other EXEC. The data is store
the AutoOPERATOR subsystem (SS) so that it can easily be reused not only by the curr
user but also by any other user. Predefined customized patterns by EXEC type (ALERT-
initiated EXEC, Rule-initiated EXEC and so on) may be stored. Later, they can serve as
patterns that require minimal modification. The storage mechanism is self-reorganizing a
geared towards multi-user access.
416 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ws
Accessing the EXEC Testing Facility

Access the EXEC Testing Facility through the EXEC Management Facility. Figure 20 sho
an example.

Once the EXEC Management panel is displayed, to test an EXEC:

1. Locate the EXEC name in the member list.

2. Place aT (for Test EXEC) in theLC column.

In Figure 20, an EXEC named PARSE is selected to be tested.

3. Press the ENTER key.

BMC Software ------------------ EXEC Management ----------------- AutoOPERATOR
COMMAND ===> TGT ===> SYSC
INTERVAL ==> 1 DATE --- 01/01/29
STATUS --- INPUT Scroll right/left TIME --- 07:29:58
Primary command: Sort
 EXECs defined 159 Scheduled 2 Enabled 159
 High Priority running 0 Queued 0 1
 Norm Priority running 0 Queued 0 7

 PRESS EXPAND TO VIEW EXEC ACTIVITY
 (B)ROWSE, (E)NABLE, (D)ISABLE, (S)ELECT EXEC, (T)EST EXEC

LC NAME STATUS GROUP FUNCTION CODE AUTHOR DESCRIPTION
 ________ _ ________ ________ __ ________ _________________________
_ PAEXP01 ENABLED CIM4
_ PAEXP02 ENABLED CIM4
_ PAGPNL ENABLED CIM4
_ PALIST ENABLED CIM4X
T PARSE ENABLED SYSTEMS UTIL ERNST ENQ CHECKER FOR MULTISYST
_ PATTERN ENABLED RAE2
_ POST ENABLED RAE1
_ PRGAAO ENABLED RAE1
_ PROV1 ENABLED RAE1

Figure 20. EXEC Management Application Panel
Chapter 13. Testing and Debugging EXECs Interactively417

 on

s.
nt.

s
me

ssing.

C
trol

t
since

d by
pper
The EXEC is loaded and the EXEC Test panel is automatically displayed (Figure 21
page 418).

The EXEC Test Control panel shows a scrollable listing of the EXEC at the bottom of the
panel. The upper portion of the panel contains information about the available command
Whenever an EXEC is tested, the debugger suspends execution before the first stateme

The current position of the EXEC during testing is indicated by three factors:

• The line is highlighted

• An arrow to the left of it points at it

• The characterB (for before) orA (for after) prefixes it

The field near the top of the panel, labeledEXEC, contains the name of the currently tested
member. When working with nested EXECs (EXECs that call other EXECs as subroutine
using the IMFEXEC SELECT WAIT(YES) command), the debugger always reflects the na
of the EXEC currently executing. Therefore, the value of theEXEC field can change during the
debugging session and may be used to establish a point of reference for the level of proce

If you are debugging an EXEC (EXECA) that calls another EXEC (EXECB) with IMFEXE
SELECT WAIT(NO), then EXECB will execute and the debugging application has no con
over EXECB and EXECB cannot be debugged.

The fieldID shows the identification assigned to the current thread, so it remains constan
throughout the debugging session. This field also reflects the number of EXECs executed
the last AutoOPERATOR SS restart (this number does not include nested EXECs).

Since a large portion of the panel is taken up by command information that is not require
the more advanced user, the bottom portion of the panel can be expanded to cover the u
portion of the panel.

BMC Software --------------------- EXEC Test ---------------------------------
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 07:59:48
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 B->PROC 2 P1 DSNAME 00001
 /*** 00002
 /* 00003
 /* DOC GROUP(SYSTEMS) AUTHOR(ERNST) FUNC(UTIL) 00004
 /* DOC DESC(ENQ CHECKER FOR MULTISYSTEM) 00005
 /* 00006
 /*** 00007
 GLOBAL NROFTARGETS 00008
 SET EOF=FALSE 00009
 SET NROFTARGETS=0 00010

Figure 21. EXEC Test Control Panel
418 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ent

ou
t”
To expand the view, issue theCMDSHOW OFF primary command. The panel will look like
Figure 22:

Commands

The following application commands can be issued on the COMMAND line:

Command Function

B Browses the EXEC trace wraparound buffer.

C Sets and resets conditional breakpoints.

V Displays, deletes, and changes variable contents.

O Displays OSPI buffer images.

In addition to these commands, the following primary commands can be issued at the
COMMAND line:

Command Function

CANCEL Terminates execution of the EXEC and returns to the EXEC Managem
panel.

This command is successful only if the EXEC has returned control to y
by using a breakpoint (see “How to Use the IMFEXEC BKPT Statemen
on page 416 for more information).

BMC Software ---------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3

 B->PROC 2 P1 DSNAME 00001
 /*** 00002
 /* 00003
 /* DOC GROUP(SYSTEMS) AUTHOR(ERNST) FUNC(UTIL) 00004
 /* DOC DESC(ENQ CHECKER FOR MULTISYSTEM) 00005
 /* 00006
 /*** 00007
 GLOBAL NROFTARGETS 00008
 SET EOF=FALSE 00009
 SET NROFTARGETS=0 00010
 ERROR DO 00011
 IF &LASTCC=400 THEN DO 00012
 SET EOF=TRUE 00013
 CLOSFILE MYJNT 00014
 RETURN 00015
 END 00016
 ELSE DO 00017
 EXIT 00018
 END 00019
 END 00020

Figure 22. EXEC Test Control Panel—Advanced Format
Chapter 13. Testing and Debugging EXECs Interactively419

e

s

 a

is

tly

d

e

CMDSHOW Uses the following parameters to control the presentation format of th
EXEC Test Control panel:

ON Turns command help on
OFF Turns command help off

CONTINUE Resumes EXEC processing until the next breakpoint is encountered.

EXPAND Displays the interpreted buffer image of the current line with all function
and variables substituted. A separate panel is used to accommodate
continuation lines.

Find Attempts to locate the argument in the current EXECs source and
repositions the display accordingly.

FORCE Terminates execution of the EXEC. This command should be used as
last resort. It functions similar to the .CANCEL BBI command.

GO Is an alias for CONTINUE.

Locate Uses the argument so that the relative line with the given line number
displayed at the top.

OFF Removes all conditional or unconditional breakpoints set for the curren
displayed EXEC.

RUN A combination of OFF and CONTINUE. All breakpoints are removed an
EXEC processing resumes.

SKIP When positioned before an IMFEXEC statement, this command skips
processing of that specific IMFEXEC statement and resumes EXEC
processing.

STEP Resumes execution of the EXEC until the next IMFEXEC statement is
encountered and the STEP command returns control to you.

VARON Turns current line interpretation on. The current line is shown in
interpreted instead of source line format.

VAROFF Turns current line interpretation off. The current line is shown in sourc
line instead of interpreted format. This is the initial setting.
420 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

is

is

is

e
urrent
Using Line Commands

The following line commands can be entered in the input field (shown as an underscore
character to the left of every IMFEXEC statement in the source):

Command Function

A Establishes a breakpoint after the selected statement.

Execution control is returned to you immediately after processing this
statement. AnA to the left of the statement serves as a reminder that th
type of breakpoint has been set.

B Establishes a breakpoint before the selected statement.

Execution control is returned to you immediately before processing th
statement. Use this form of breakpoint if you want to use the SKIP
primary command. AB to the left of the statement serves as a reminder
that this type of breakpoint has been set.

O Removes all breakpoints from the indicated line.

Displaying Interpreted Source Statements

This command toggles the display of the current source line to an interpreted format. Th
means that the following have been completed on this line:

• All TSO/REXX functions have already been executed

• All variables have been evaluated and replaced by their values

This is most easily understood by looking at the following two panels. Figure 23 shows th
source code exactly as it is found in the member of the SYSPROC concatenation. The c
statement contains the variable name&NROFTARGETS.

BMC Software --------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 14:50:44
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 SET I = &I + 1 00052
 END 00053
 IF &TYPE=MVS THEN DO 00054
 SET NROFTARGETS=&NROFTARGETS+1 00055
 SET MTARGET&NROFTARGETS = &TARGET 00056
_ B B-> IMFEXEC VPUT MTARGET&NROFTARGETS LOCAL 00057
 END 00058
 END 00059
 *************************** END OF DATA ****************************

Figure 23. EXEC Test Panel with the VAROFF Option
Chapter 13. Testing and Debugging EXECs Interactively421

e line
Figure 24 shows the current line after interpretation with excessive blanks and possible
comments removed. It also substitutes the value of the variable&NROFTARGETS for its name.

Note that not only variables are substituted but also all other references are resolved. Th
will always only show literals instead of functions, variables, and so on.

BMC Software --------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 14:54:00
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 SET I = &I + 1 00052
 END 00053
 IF &TYPE=MVS THEN DO 00054
 SET NROFTARGETS=&NROFTARGETS+1 00055
 SET MTARGET&NROFTARGETS = &TARGET 00056
_ B B->IMFEXEC VPUT MTARGET1 LOCAL 00057
 END 00058
 END 00059
 *************************** END OF DATA ****************************

Figure 24. EXEC Test Panel with the VARON Option
422 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

 in
help

be
Tracing Interpreted Source Statements

The EXEC Trace panel shows the most recently executed IMFEXEC statements, sorted
ascending order, by execution time. The history of the EXEC's processing can sometimes
in explaining why a certain program branch was taken. TheEXEC andID show the same
information as in the EXEC Testing Control panel.

Note: The information in the EXEC Test - Trace panel is not available after the tested
EXEC thread ends.

The trace information of an EXEC that is executing under the EXEC Testing Facility can
browsed (as shown in Figure 25) by entering the primary commandB on the EXEC Testing
Control panel.

BMC Software ----------------- EXEC Test - Trace ----------------- AutoOPERATOR
COMMAND ===>
 EXEC === PARSE ID === 3 DATE --- 01/01/29
 TIME --- 15:01:51
14:48:43 TRACE * - - START OF TEST TRACE - - *
14:48:43 BEFORE IMFEXEC BKPT
14:49:20 AFTER IMFEXEC BKPT
14:49:21 BEFORE IMFEXEC BKPT
14:49:49 AFTER IMFEXEC BKPT
14:49:49 BEFORE IMFEXEC BKPT
14:50:13 AFTER IMFEXEC BKPT
14:50:13 BEFORE IMFEXEC VPUT MTARGET1 LOCAL
 ************************* END OF DATA **************************

Figure 25. EXEC Trace Panel
Chapter 13. Testing and Debugging EXECs Interactively423

t,

oint

u

lds of
Setting Conditional Breakpoints

The Conditional Breakpoints panel provides the capability to set and reset conditions tha
when met, cause EXEC execution to be suspended and control returned to you (refer to
“BKPT” on page 259 for more information about conditional breakpoints).

Note: The specified conditions are checked whenever an IMFEXEC statement is
encountered. If a condition is met but no IMFEXEC statement encountered,the
breakpoint does not trigger.

TheC primary command issued from the EXEC Test panel invokes the Conditional Breakp
Control panel as shown in Figure 26.

TheEXEC andID fields carry the same contents as in the EXEC Testing Control panel. Yo
can specify up to 13 conditions that must be met for the EXEC to halt:

1. Specify the name of the variable whose contents are to be examined in one of the fie
the column labeledVariable-Name.

2. Enter an operator in the column labeledOP.

3. Enter a literal against which the comparison will be made in the column labeledValue.

4. Specify the pool in which the variable to be checked resides in thePool column.

Following a list of valid operators:

Operator Function

= Equal to (or matches with literal pattern)
EQ Equal to (or matches with literal pattern)
¬= Not equal to
<> Not equal to
NE Not equal to
< Less than
LT Less than
> Greater than

BMC SOftware ---------------- Conditional Breakpoints ------------- AutoOPERATOR
COMMAND ===>

Exec Name === PARSE Exec ID == 3

 Variable-name Op Value Pool

 NROFTARGETS_____________________ GT 1___________________________________ TSO_
 MTARGET1________________________ =_ SYSC________________________________ LOCL
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____

Figure 26. Conditional Breakpoint Control Panel
424 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ntent

y a

ou,
GT Greater than
>= Greater than or equal to
GE Greater than or equal to
<= Less than or equal to
LE Less than or equal to

The POOL column accepts one of the following literals:

Value Interpretation

TSO Standard REXX or CLIST variable
LOCL LOCAL AutoOPERATOR pool
SHAR SHARED AutoOPERATOR pool
PROF PROFILE AutoOPERATOR pool
SHRT SHARED TEST AutoOPERATOR pool (refer to “Introduction” on page

411)
PRFT PROFILE TEST AutoOPERATOR pool (refer to “Introduction” on page

411)

The following rules apply for comparisons:

• If the operator indicates an equal to operation and either the literal or the variable co
contains non-numeric characters, a pattern matching operation is performed.

For example, if the variable ABC contains the character string'BAB053 BAC635
BAB059' and the comparison operator is an equal sign and the literal specifies
'*BAC635*', the condition is considered met.

• If both the literal and the variable contain only numeric characters (possibly prefixed b
sign), a numeric comparison is performed which may render different results than a
character-only comparison.

For example, if the variable contains a value of '0000' and the literal specifies '0', the
condition will be considered met.

All conditions specified on this panel must be met for the EXEC to return control to y
that is, an implicit AND operator is assumed between all specifications.
Chapter 13. Testing and Debugging EXECs Interactively425

C,
n
ED

el

t

h. For
Displaying Variables

This panel displays a scrollable listing of all TSO variables of the currently executing EXE
accompanied by all variables found in the AutoOPERATOR LOCAL pool for this EXEC. I
addition, all variables contained in the PROFILE, SHARED, PROFILE TEST, and SHAR
TEST pool may be shown.

Issuing the primary command V in the COMMAND field of the EXEC Testing Control pan
invokes the panel shown in Figure 27.

Two input fields allow you to narrow the focus down to the variables of interest. You can
specify a pattern in the column labeledVARIABLE NAME that all variables to be displayed mus
match; for example, entering IMF* (or IMF for short) displays only all variables beginning
with these 3 characters.

If you enter a pattern that ends with a dash (-), you must enter an asterisk after the das
example:

IMF-*

BMC Software ------------------ Variable Selection --------------- AutoOPERATOR
 COMMAND ===>
 Primary command: Add Scroll right/left DATE --- 01/01/30
 TIME --- 14:02:31
 LC CMDS --- (S)elect, (D)elete

 Variable Name Pool Value
 _______________________________ LOCL
 _ LINE1 LOCL PARSE
 _ MTARGET1 LOCL SYSB
 _ MTARGET2 LOCL SYSC
 _ MTARGET3 LOCL SYSD
 _ MTARGET4 LOCL BADN
 _ MTARGET5 LOCL ROLF
 ************************* END OF DATA **************************

Figure 27. Variable Selection Panel
426 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

f

f a

.

The input field in the column titledPOOL accepts either a full or pattern specification for one o
the following values:

Value Interpretation

TSO Standard REXX or CLIST variable

LOCL LOCAL AutoOPERATOR pool

SHAR SHARED AutoOPERATOR pool

PROF PROFILE AutoOPERATOR pool

SHRT SHARED TEST AutoOPERATOR pool (refer to “Introduction” on page
411)

PRFT PROFILE TEST AutoOPERATOR pool (refer to “Introduction” on page
411)

For example, specifying P* displays all variables currently contained in the PROFILE and
PROFILE TEST pools. This display can be scrolled right and left to show the full value o
variable.

The following line commands can be entered in the input fields in the column labeledLC:

Command Interpretation

S Select this variable for update or display

D Delete this variable

The ADD primary command may be used to add additional variables to a particular pool
PROFILE and SHARED variables may be displayed but not deleted or modified. Refer to
“Overview” on page 413 for an explanation for this restriction.
Chapter 13. Testing and Debugging EXECs Interactively427

the

yped

el
Creating and Modifying Variables

The Variable Add/Update panel shows the complete contents of the selected variable. If
variables resides in the SHARED or PROFILE pool, the contents can be examined butnot
changed. Otherwise, variable name, pool, and contents are input fields and may be overt
with new values.

Issuing the ADD primary command or the S line command on the Variable Selection pan
invokes the panel shown in Figure 28.

ThePool input field can contain or accept the following values:

Value Interpretation

TSO Standard REXX or CLIST variable

LOCL LOCAL AutoOPERATOR pool

SHAR SHARED AutoOPERATOR pool (may not be entered)

PROF PROFILE AutoOPERATOR pool (may not be entered)

SHRT SHARED TEST AutoOPERATOR pool (refer to “Overview” on page
413)

PRFT PROFILE TEST AutoOPERATOR pool (refer to “Overview” on page
413)

Keep in mind that you may not make modifications to the PROFILE or SHARED pools.

 BMC Software ----------------- Variable Add/Update ---------------- AutoOPERATOR
 COMMAND ===>
 Primary command: HEX ON/OFF DATE --- 01/01/30
 TIME --- 14:05:45
 Variable Name ===> MTARGET1
 Pool ===> LOCL
 Value (Enter Below):
 SYSB

To update variable, press END To cancel changes, enter CANCEL

Figure 28. Variable Add/Update Panel
428 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

The primary command HEX with the parameters ON and OFF toggles the display to a
hexadecimal representation and back as shown in Figure 29.

Updates may be performed in either presentation format.

 BMC Software ----------------- Variable Add/Update ---------------- AutoOPERATOR
 COMMAND ===>
 Primary command: HEX ON/OFF DATE --- 01/01/30
 TIME --- 14:06:34
 Variable Name ===> MTARGET1
 Pool ===> LOCL
 Value (Enter Below):
 SYSB
 EEEC
 2822

To update variable, press END To cancel changes, enter CANCEL

Figure 29. Variable HEX Display
Chapter 13. Testing and Debugging EXECs Interactively429

ssion

own

y

Testing OSPI Sessions

This panel contains a list of all OSPI Sessions established during the current debugging se
that have not been explicitly terminated using the IMFEXEC LOGOFF command.

This panel is invoked by the O primary command of the EXEC Testing Control panel as sh
in Figure 30:

Following is a description of the columns on this panel:

Title Description

Application VTAM ACB name of the application that a session was established to.

ACB used The VTAM ACB either explicitly specified on the IMFEXEC LOGON
statement using the REQACB keyword or implicitly picked from the pool
assigned to OSPI.

Status One of the following:

ACTIVE The session is currently active. Commands may be entered
against it.

INACTIVE The session has been terminated either due to a failure or
because an UNBIND was sent from the session partner. An
DISCONNECTed sessions are not shown.

You can see the current buffer image of the session by placing a S in theLC column and
pressing ENTER. The buffer image is displayed until you press ENTER again.

 BMC Software ----------------- EXEC Test - OSPI ------------------ AutoOPERATOR
 COMMAND ===>
 EXEC === OSPI ID === 10 DATE --- 01/01/30
 OSPI Sessions owned: (S)elect session to display TIME --- 14:09:18

 LCMD Application ACB used Status
 _ TAOVAP OSPI0000 ACTIVE

 Press END to return

Figure 30. OSPI Session Panel
430 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

se
Cs

rator

on of

tions
Chapter 14. Using the AutoOPERATOR-Supplied Utility
EXECs

BMC Software provides a set of utility EXECs located in BBPARM member BBPROC. The
EXECs perform functions or subroutines that sometimes are called by various other EXE
(for example, as an EXEC-initiated EXEC). These EXECs also can be invoked by an ope
(for example, as an user-initiated EXEC).

The return codes returned by the EXECs and their meanings are listed with the discussi
each EXEC. To test a return code, use the variable IMFRC.

“How to Resolve Compound SYSPROG Variables” on page 433 describes calling conven
and requirements.

Distributed Utility EXECs

The following lists the distributed utility EXECs.

EXEC Name Description

@STATASK Command interface to start tasks
CANEXEC Cancels DELVARS on user specification
DELVARS Deletes variables from a pool
MUT001C Issues $E, $P, and $C JES2 commands
SUBMIT Determines which SS will handle job submission
SUBMITOR Submits jobs on the target SS
@TIMER Interface EXEC to timer queues; this drives EXECs/events
JES2DI Interface EXEC to JES2's $DI command
JES2DQ Interface EXEC to JES2's $DQ command
CNVSECS Convert time HH:MM:SS format to seconds
CNVTIME Convert seconds to HH:MM:SS format
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs431

he
SYSPROG Utility EXECs

The following lists the utility EXECs that allow you to interface with SYSPROG services. T
following naming convention is used for all the SYSPROG utility EXECs:

Rxxx

wherexxx is the first three characters of the SYSPROG service.

EXEC Name Description
RASM Interface to the SYSPROG ASM service
RCPU Interface to the SYSPROG CPU service
RCSS Interface to the SYSPROG CSSUM service
RIO Interface to the SYSPROG IO service
RMDE Interface to the SYSPROG MDEV service
RMON Interface to the SYSPROG MON service
RMPA Interface to the SYSPROG MPA service
RMTP Interface to the SYSPROG MTP service
RPAG Interface to the SYSPROG PAGING service
RPRO Interface to the SYSPROG PRO service
RREP Interface to the SYSPROG REP service
RREPRX Interface to the SYSPROG REP service
RRES Interface to the SYSPROG RES service
RRSM Interface to the SYSPROG RSM service
RSTA Interface to the SYSPROG STA service
RSYS Interface to the SYSPROG SYS service
RTPI Interface to the SYSPROG TPIO service
RTSU Interface to the SYSPROG TSU service
432 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

.
e
with

an

in
How to Resolve Compound SYSPROG Variables

The SYSPROG utility EXECs are called by other EXECs with the WAIT(YES) parameter
These EXECs produce LOCAL variables that are available to their callers upon return; th
variables are prefixed with the name of the EXEC. The LOCAL variables can be accessed
the IMFEXEC VGET command by naming the specific variable or in a do-loop if more th
one variable of the same type is required.

An example using a SYSPROG utility EXEC is shown in Figure 31.

Caution:

Compound variables in the format of RREPI(xxx) need to be resolved prior to their usage
any function; otherwise, the results are unpredictable.

 /*REXX*/
 "IMFEXEC SELECT EXEC(RREP) WAIT(YES)" <=== CALL REPLIES EXEC
 "IMFEXEC VGET (RREPROL1) LOCAL" <=== NUMBER OF OUTPUT LINES
 RETURNED IN LOCAL POOL
 N = 1
 "IMFEXEC MSG 'LIST OF OUTSTANDING REPLIES'"
 DO WHILE N <= RREPROL1
 "IMFEXEC VGET (RREPI"N" RREP"N") LOCAL" <=== LOCAL VARIABLE
 "IMFEXEC MSG .REPLYID="VALUE('RREPI'N) "MESSAGE ="VALUE('RREP1'N)
 N = N +1
 END

Figure 31. Example ofSYSPROG Utility Usage
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs433

e

@STATASK: Start Tasks

The EXEC @STATASK starts a specific task. It ensures that the task is not already activ
before issuing the START command.

The following statement shows the format of the call from an EXEC:

IMFEXEC SELECT EXEC(@STATASK TASKNAME ID PARM)

Table 11 lists the @STATASK parameters.

Following is a list of return codes from @STATASK:

Return Code Description

0 Request successfully completed
8 Invalid parameters specified
12 Task is already active
16 Task failed to start

CANEXEC: Cancel Delvars

This EXEC cancels the DELVARS EXEC. When the ALERT produced by DELVARS is
selected, the ALERT application schedules the CANEXEC.

The CANEXEC is an internal utility and there are no external user call interfaces.

Following is a list of return codes from CANEXEC:

Return Code Description

0 Request successfully completed
12 EXEC ID to cancel not passed

Table 11. @STATASK Parameters

Parameter Required? Description

TASKNAME Yes Name of the task to start; for example:

RESOLVE

ID No ID name of the task; for example:

RESOLVE.R

where R is the ID

PARAMETER No Any parameters for the task. If
required, include the PARM=
keyword; for example:

PARM=SOFTIPL
434 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

DELVARS: Delete Variables

This EXEC is invoked either by other EXECs or by the operator to delete all or selected
variables from a specified pool.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(DELVARS PARM POOL)

Use the following format for a console-initiated request:

%DELVARS PARM POOL

If the parameter POOL is not specified, POOL defaults to SHARED pool.

Table 12 lists the DELVARS parameters.

Following is a list of return codes from DELVARS:

Return Code Description

0 Request successfully completed
8 Variable does not exist
12 Specified POOL or TYPE is incorrect

Table 12. DELVARS Parameters

Parameter Required? Description

PARAMETER Yes Name of the variable to delete; to delete all
variables from a pool, specify an asterisk (*)
or ALL

POOL No If specified, it must be SHARED or
PROFILE; default is SHARED

TYPE [SHORT|LONG] Specifies whether the EXEC is to delete long
or short variables
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs435

e, or

 at
MUT001C: Issue $E, $P, and $C Commands

This EXEC is invoked by the JESDOWN EXEC to reset and drain a specified line, remot
printer. It also can reset and cancel a specified job.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(MUT001C RMLNPRJB RLPJ)

Table 13 lists the MUT001C parameters.

There are no return codes from MUT001C.

SUBMIT: Find Subsystem Handling Job Submissions

This EXEC is invoked by any EXEC or TS user who needs to submit a batch job. The
SUBMIT EXEC VGETs the value of the SHARED pool variable SUBMITSS. Then it calls
the SUBMITOR EXEC to submit the job on the target SS whose identification was VPUT
initialization.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(SUBMIT JOBNAME)

Use the following format for a TS-initiated request:

%SUBMIT JOBNAME

Table 14 lists the SUBMIT parameters.

Following is a list of return codes from SUBMIT:

Return Code Description

0 Call to SUBMITOR successful
8 Cannot VGET SUBMITSS variable
12 No jobname passed

Table 13. MUT001C Parameters

Parameter Required? Description

RMLNPRJB Yes JES2 REMOTE, LINE, PRINTER, or
JOBNAME to issue $E/$P/$C commands
against

RLPJ Yes A one character literal indicating that the first
value is a R(emote), L(ine), P(rinter) or J(job)

Table 14. SUBMIT Parameters

Parameter Required? Description

JOBNAME Yes Name of the job to submit
436 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

l
nd the
SUBMITOR: Submit Jobs on the Target Subsystem

This EXEC is invoked by the SUBMIT EXEC or other EXEC to submit a batch job.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(SUBMITOR JOBNAME)

Table 15 lists the SUBMITOR parameters.

Following is a list of return codes from SUBMITOR:

Return Code Description

0 Job was successfully submitted
12 No jobname passed

RASM: Auxiliary Storage Manager Information

Use the RASM EXEC to determine the last IPL type, the address of the ASMVT, the tota
number of slots, the number and percentage of available slots, the largest user of slots, a
percentage owned along with information on all the paging volumes.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(RASM OPTS) WAIT(YES)

Table 16 lists the RASM parameters.

Following is a list of return codes from RASM:

Return Code Description

8 Security failure
16 Parameter neither null nor map

Table 15. SUBMITOR Parameters

Parameter Required? Description

JOBNAME Yes Name of the job to submit

Table 16. RASM Parameters

Parameter Required? Description

OPTS No If specified, must be MAP

SORTFLD No Name, VIO NVIO (Corresponds to SYSPROG
input parameters)
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs437

Table 17 lists the variables returned by RASM in the LOCAL POOL.

Table 17. Variables Returned by RASM in the LOCAL POOL

Variable Name Type Description

RASMB(XXX) Data Burst

Note: Where XXX corresponds to the output line number

RASMF(XXX) Data Free slots

RASMIPLT Data IPL type

RASMJ(XXX) Data Jobname

RASML(XXX) Data Label of Volume

RASMN(XXX) Data Non-VIO slots

RASMP(XXX) Data Percentage free

RASMROL1 Control Number of output lines

RASMROL2 Control Start line number of page data set
information

RASMROL3 Control Start line number of map information

RASMS(XXX) Data Size of data set in slots

RASMSLAV Data Available slots

RASMSLPC Data Percentage available

RASMSUSR Data Largest slot user

RASMT(XXX) Data Type of page data set

RASMTLSL Data Total slots

RASMU(XXX) Data Unit address of page data set

RASMUSPC Data Percentage largest user is holding

RASMV(XXX) Data VIO slots

RASMVTA Data Address of vector table
438 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

atch

ms.
RCPU: CPU Usage Information

Use the RCPU EXEC to determine the top 10 CPU users, overall MVS overhead, total b
usage, total TSO usage, and overall CPU busy.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RCPU OPTS) WAIT(YES)

Table 18 lists the RCPU parameters.

Following is a list of return codes from RCPU:

Return Code Description

8 Security failure

Table 19 lists the variables returned by RCPU in the LOCAL POOL for non-PR/SM syste

Table 18. RCPU Parameters

Parameter Required? Description

OPTS No Number of seconds to monitor CPU usage; if not
specified, the default is 10 seconds

Table 19. Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems

Variable Name Type Description

RCPUB(XX) Data CPU percent busy

RCPUBATP Data Percentage of CPU used by batch

RCPUBATT Data Seconds of CPU used by batch

RCPUC(XX) Data CPU number

RCPUD(XX) Data Dispatching priority

RCPUMSVO Data Seconds of CPU in MVS overhead

RCPUMVSP Data Percentage of CPU in MVS overhead

RCPUN(XX) Data Name of job

RCPUP(XX) Data Priority

RCPUROL1 Control Total number of output lines

RCPUROL2 Control Number of job related output variable groups

RCPUROL3 Control Number of CPU related output groups

RCPUS(XX) Data Seconds of CPU used

RCPUT(XX) Data Type of JOB (STC BAT TSU)

RCPUTSOP Data Percentage of CPU used by TSO
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs439

ed

)

Table 20 lists the variables returned by RCPU in the LOCAL POOL for PR/SM systems.

RCPUTSOT Data Seconds of CPU used by TSO

RCPUU(XX) Data Percentage of CPU

Table 20. Variables Returned by RCPU in the LOCAL POOL for PR/SM Systems

Variable Name Type Description

RCPUT(XX) Data Type of address space (STC JOB or TSO)

RCPUN(XX) Data Address space name

RCPUU(XX) Data Percentage of CPU used

RCPUP(XX) Data Dispatching priority in hexadecimal

RCPUD(XX) Data Dispatching priority in decimal

RCPUBATP Data Percentage of CPU used by batch address
space

RCPUSTC Data Percentage of CPU used by started task

RCPUTSOP Data Percentage of CPU used by TSO users

RCPUTTAL Data Total: always 100%

RCPUROL1 Control Total number of output lines

RCPUROL2 Control Number of job related output variable groups

RCPUBUSY Data Percent of time total complex was processing

RCPUWAIT Data Percent of time total complex was waiting

RCPUOVHD Data Percent of time spent on plex overhead

RCPURCVD Data Percent of time this partition received

RCPURLTV Data CPU percent which is this partition'S relative
share

RCPUOTHR Data Percent CPU used by address spaces not list

RCPUTOTL Data Total CPU percent this partition used of its
relative share

Table 19. Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems (Continued

Variable Name Type Description
440 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

.

RCSS: Common Storage Usage Information

Use the RCSS EXEC to determine the virtual storage usage on an address space basis

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RCSS) WAIT(YES)

There are no RCSS input parameters.

Following is a list of return codes from RCSS:

Return Code Description

8 Security failure
16 COMMON STORAGE MONITOR not enabled

Table 21 lists the variables returned by RCSS in the LOCAL POOL.

Table 21. Variables Returned by RCSS in the LOCAL POOL

Variable Name Type Description

RCSSA(XXX) Data ASID of task

RCSSB(XXX) Data SQA used below the 16M line

RCSSC(XXX) Data SQA used above the 16M line

RCSSD(XXX) Data CSA used below the 16M line

RCSSE(XXX) Data CSA used above the 16M line

RCSSF(XXX) Data Total SQA used

RCSSG(XXX) Data Total CSA used

RCSSN(XXX) Data Name of task

RCSSROL1 Control Number of output groups
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs441

s

RENQ: SYSPROG ENQUEUE Command

Use the RENQ EXEC to retrieve information about ENQUEUE conflicts.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RENQ)

There are no RENQ input parameters.

Following is a list of return codes from RENQ:

Return Code Description

0 Request completed successfully
4 No enqueue conflicts
8 Security failure

Table 22 lists the variables returned by RENQ in the LOCAL POOL.

Table 22. Variables Returned by RENQ in the LOCAL POOL

Variable Name Type Description

RENQROL1 Control Number of output lines

RENQSC&N Data Scope of ENQUEUE: step, system or system

RENQGL&N Data Global or local

RENQM&N Data Major name of ENQUEUE

RENQR&N Data Resource name

RENQD&N Data Status: owns or wait

RENQT&N Data Type: SRC or EXC

RENQAS&N Data ASID

RENQTI&N Data Time

RENQU&N Data Jobname

RENQSY&N Data SYSID

RENQRC&N Data Resource count (if reserve assocociated with
ENQUEUE)

RENQUN&N Data Unit address (for reserves) or null

RENQVL&N Data Volume serial (for reserves) or null
442 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

RIO: System Input/Output Information

Use the RIO EXEC to find all outstanding non-TP I/Os.

An optional parameter can be passed that limits the I/O information to the UCB which is
passed by the caller.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RIO UCB) WAIT(YES)

Table 23 lists the RIO parameters.

Following is a list of return codes from RIO:

Return Code Description

0 Request successfully completed
4 No outstanding I/O for device
8 No outstanding I/O in system or security failure

Table 24 lists the variables returned by RIO in the LOCAL POOL.

Table 23. RIO Parameters

Parameter Required? Description

UCB No Device address

Table 24. Variables Returned by RIO in the LOCAL POOL

Variable Name Type Description

RIOAL(XXX) Data Allocations

RIODV(XXX) Data Driver

RIOIA(XXX) Data IOQ address

RIOJN(XXX) Data Jobname

RIOOP(XXX) Data Opens

RIOPD(XXX) Data Paging device

RIOROL1 Control Number of output lines

RIORV(XXX) Data Reserves

RIOUA(XXX) Data Unit address

RIOVS(XXX) Data Volume serial
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs443

RMDE: Device Monitoring

Use the RMDE EXEC to determine I/O bottlenecks in the system.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMDE UCB TIME) WAIT(YES)

Table 25 lists the RMDE parameters.

Following is a list of return codes from RMDE:

Return Code Description

4 All devices are less than 1 percent busy
8 Security failure
16 No specified devices are online

Table 26 lists the variables returned by RMDE in the LOCAL POOL.

Table 25. RMDE Parameters

Parameter Required? Description

UCB No Device address or a range of device addresses to
monitor; the default is all devices

TIME No Length of time (in seconds) to monitor; the default
is 15 seconds

Table 26. Variables Returned by RMDE in the LOCAL POOL

Variable Name Type Description

RMDEA(XXX) Data ACYL

RMDEB(XXX) Data Device busy

RMDEC(XXX) Data Connect time

RMDED(XXX) Data Disconnect time

RMDEP(XXX) Data Pend time

RMDEQ(XXX) Data Q length

RMDER(XXX) Data Rate

RMDEROL1 Control Number of output lines

RMDES(XXX) Data Seek

RMDEU(XXX) Data Device UCB address

RMDEV(XXX) Data Volume serial
444 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

,

RMON: Address Space Monitoring

Use the RMON EXEC to monitor an address space to determine if its status is wait state
looping, or running normally.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMON TASKNAME) WAIT(YES)

Table 27 lists the RMON parameters.

Following is a list of return codes from RMON:

Return Code Description

8 Security failure
16 Task name either not specified or not found

Table 27. RMON Parameters

Parameter Required? Description

TASKNAME Yes Name of task to monitor
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs445

Table 28 list the variables returned by RMON in the LOCAL POOL.

Table 28. Variables Returned by RMON in the LOCAL POOL

Variable Name Type Description

RMONCPA Data CPU accumulated in last 30 seconds

RMONCPT Data Total CPU used

RMONDP Data Priority in page range notation

RMONEXA Data EXCPs accumulated in last 30 seconds

RMONEXT Data Total EXCPs

RMONHP Data Priority in decimal

RMONJN Data Task name

RMONNU Data Task number:sup

RMONPAA Data Pages accumulated in last 30 seconds

RMONPAT Data Total pages

RMONPG Data Performance group

RMONPP Data Performance period

RMONSN Data Step name

RMONSUA Data Service unit accumulated in last 30 seconds

RMONSUT Data Total service units

RMONTT Data Task type (TSU STC JOB)*

Note: *Variable will have a null value if started before JES or started as SUB=MSTR.
446 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

th.
RMPA: Channel Path Monitoring

Use the RMPA EXEC to monitor the percentage of activity or imbalances of a channel pa

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMPA PATH TIME) WAIT(YES)

Table 29 lists the RMPA parameters.

Following is a list of return codes from RMPA:

Return Code Description

4 Possible error condition, verify path(s)
8 Security failure
16 Path(s) specification error

Table 30 lists the variables returned by RMPA in the LOCAL POOL.

Table 29. RMPA Parameters

Parameter Required? Description

PATH No Path or range of paths

TIME No Length of time (in seconds) to monitor

Table 30. Variables Returned by RMPA in the LOCAL POOL

Variable Name Type Description

RMPAB(XXX) Data Percent busy

RMPAP(XXX) Data Channel path

RMPAROL1 Control Number of output lines
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs447

s

RMTP: Monitor Pending Mounts

Use the RMTP EXEC to find the volume serial number, UCBs, device types, and addres
spaces waiting for either tape or DASD mounts.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMTP) WAIT(YES)

There are no RMTP input parameters.

Following is a list of return codes from RMTP:

Return Code Description

4 More than 50 outstanding mounts
8 Security failure
16 No mounts pending

Table 31 lists the variables returned by RMTP in the LOCAL POOL.

Table 31. Variables Returned by RMTP in the LOCAL POOL

Variable Name Type Description

RMTPJ(XXX) Data Jobname that requested mount

RMTPT(XXX) Data Type of unit

RMTPU(XXX) Data Unit address of mount

RMTPV(XXX) Data Volser of requested volume
448 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

RPAG: System Wide Paging Information

Use the RPAG EXEC to find paging or demand paging rates.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RPAG) WAIT(YES)

There are no RPAG input parameters.

Following is a list of return codes from RPAG:

Return Code Description

8 Security failure

Table 32 lists the variables returned by RPAG in the LOCAL POOL.

Table 32. Variables Returned by RPAG in the LOCAL POOL

Variable Name Type Description

RPAGCSA Data CSA paging rate

RPAGDMND Data Demand paging rate

RPAGLPA Data LPA paging rate

RPAGRATE Data Total paging rate

RPAGRCLM Data Page reclaim rate

RPAGSWAP Data Swap paging rate

RPAGTIME Data Elapsed time since counters last cleared

RPAGVIO Data VIO paging rate
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs449

RPRO: Monitor Progress of an Address Space

Use the RPRO EXEC to report on the progress of a task.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RPRO TASKNAME) WAIT(YES)

Table 33 lists the RPRO parameters.

Following is a list of return codes from RPRO:

Return Code Description

0 Request completed successfully
4 Task not found
8 Security failure
16 Task not specified

Table 34 lists the variables returned by RPRO in the LOCAL POOL.

Table 33. RPRO Parameters

Parameter Required? Description

TASKNAME Yes Name of task on which to report progress

Table 34. Variables Returned by RPRO in the LOCAL POOL

Variable Name Type Description

RPROCL Data Job class

RPROCS Data Current step number

RPRODPTY Data Decimal version

RPROJD Data Job start date

RPROLCPU Data CPU limit

RPROMSGC Data Message class

RPROMSGL Data Message level

RPRONAME Data JOBNAME

RPRONUMB Data JES2 job number

RPROPCPU Data Percentage CPU used

RPROPG Data Performance group

RPROPGM Data Program name

RPROPGNM Data Programmer name

RPROPP Data Performance period

RPROPRTY Data Dispatching priority
450 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

RPRORR Data Region requested

RPRORU Data Region used

RPROSCPU Data Step total CPU

RPROSRB Data SRB time used (step)

RPROSS Data Step start time

RPROST Data Address space start time

RPROSTEP Data Currently executing step

RPROTCB Data TCB time used (step)

RPROTS Data Total steps

RPROTYPE Data Type of job (STC TSO JOB)

RPROVUA Data Virtual used above line

RPROVUB Data Virtual used below line

Table 34. Variables Returned by RPRO in the LOCAL POOL (Continued)

Variable Name Type Description
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs451

.

.

m the
XEC
RREP: Retrieve WTOR IDs

The RREP EXEC can be used to retrieve the number and text of all outstanding WTORs

The RREP EXEC can be used to retrieve the number and text of 10 outstanding WTORs

If the EXEC receives more then ten WTORs, it ends with a retrurn code of 16, sets
RREPROL1 to 0, issues an error message (REP101E) and deletes all data variables fro
local pool. If you need to process or examine more then 10 WTORS, use the RREPRX E
(see page 453).

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RREP) WAIT(YES)

Table 35 lists the RREP parameters.

Following is a list of return codes from RREP:

Return Code Description

8 Security failure
16 Received more than 10 WTORs

Table 36 lists the variables returned by RREP in the LOCAL POOL.

Table 35. RREP Parameters

Parameter Required? Description

SYSTEM Yes System ID for which to gather data. The value
ALL means the same as no specification. All
replies from a sysplex will be returned.

Table 36. Variables Returned by RREP in the LOCAL POOL

Variable Name Type Description

RREPI(XXX) Data Reply number

RREPN(XXX) Data JES number of task that issued WTOR

RREPROL1 Control Number of output lines

RREPT(XXX) Data type of task that issued WTOR (STC TSU
JOB)

RREP1(XXX) THROUGH

RREP9(XXX)
Data First nine words of message

RREP10(XXX)
THROUGH

RREP12(XXX)

Data Extended to twelth word of the message
452 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Rs.
RREPRX: Retrieve WTOR IDs

The RREPRX EXEC can be used to retrieve the number and text of all outstanding WTO

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RREPRX) WAIT(YES)

Table 37 lists the RREPRX parameters.

Following is a list of return codes from RREPRX:

Return Code Description

0 Normal completion
4 No outstanding replies found
8 Security failure
12 Command timed out
16 Error detected. RREPRX EXEC exited.

Table 38 lists the variables returned by RREPRX in the LOCAL POOL.

Table 37. RREPRX Parameters

Parameter Required? Description

SYSTEM No System ID for which to gather data. The value
ALL means the same as no specification. All
replies from a sysplex will be returned.

If no system ID is given, the default if the local
system ID.

Table 38. Variables Returned by RREPRX in the LOCAL POOL

Variable Name Type Description

RREPROL1 Control Number of output lines

RREPS.X Data The system ID of the issuer, x = line number

RREPT.X Data Type of task, STC, TSU, JOB, ASID or NULL
for JES3. NULL if task was started before JES

RREPN.X Data JES jobnumber of the task or jobname if JES3
Null if task was started before JES

RREPI.X Data The reply number

RREP.X.1-12 Data The first 12 words of the message
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs453

RRES: Retrieve Outstanding Reserves

Use the RRES EXEC to retrieve information on outstanding device reserves.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RRES) WAIT(YES)

There are no RRES input parameters.

Following is a list of return codes from RRES:

Return Code Description

0 Request completed successfully
4 No outstanding reserves
8 Security failure

Table 39 lists the variables returned by RRES in the LOCAL POOL.

Table 39. Variables Returned by RRES in the LOCAL POOL

Variable Name Type Description

RRESROL1 Control Number of output lines

RRESSC(XXX) Data Scope of reserve: systems

RRESGL(XXX) Data Global or local

RRESM(XXX) Data Major name of reserve

RRESN(XXX) Data Minor name of reserve

RRESSY(XXX) Data SYSID

RRESJ(XXX) Data Jobname

RRESAS(XXX) Data ASID

RRESC(XXX) Data Status: owns or wait

RREST(XXX) Data Type: SHR OR EXC

RRESRC(XXX) Data Reserve count

RRESS(XXX) Data Pend: yes or no

RRESU(XXX) Data Unit address

RRESV(XXX) Data Volume serial

RRESUR(XXX) Data Unit ready: no or null

RRESTI(XXX) Data Time
454 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

can
RRSM: Real Storage Management Information

The RRSM EXEC returns basic real storage information on a system-wide basis. It also
produce a detail line for each address space in the system.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RRSM OPTS) WAIT(YES)

Table 40 lists the RRSM parameters.

Note: All values for SORTFLD (with the exception of NAME and ASID) will return only
record with the 10 highest values for that field.

Following is a list of return codes from RRSM:

Return Code Description

8 Security failure
16 Other than MAP parameter specified

Table 41 lists the variables returned by RRSM in the LOCAL POOL.

Table 40. RRSM Parameters

Parameter Required? Description

OPTS No If specified, must be MAP

SORTFLD No NAME, ASID, FRAMES, FIXED, <16MB,
LSQA, WSS or PERCENT

Table 41. Variables Returned by RRSM in the LOCAL POOL

Variable Name Type Description

RRSMA(XXX) Data ASID of task

RRSMAFRM Data Available frames (free)

RRSMB(XXX) Data Fixed below 16 MB line

RRSMB16M Data Fixed frames below 16 MB line

RRSMCFFR Data Common fixed frames

RRSMCFRM Data Common frames

RRSMFFRM Data Fixed frames

RRSML(XXX) Data LSQA frames

RRSMN(XXX) Data Name of task

RRSMNFRM Data Nucleus frames

RRSMOFRM Data Online frames

RRSMP(XXX) Data Percentage of online frames allocated
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs455

RRSMPFFR Data Private fixed frames

RRSMPFRM Data Private frames

RRSMS(XXX) Data Storage frames

RRSMSFFR Data SQA fixed frames

RRSMW(XXX) Data Working set size

Table 41. Variables Returned by RRSM in the LOCAL POOL (Continued)

Variable Name Type Description
456 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

tion.
RSPA: Retrieve DASD Space Information

The RSPA service can be used to retrieve free space and contiguous free space informa
The following statement shows the format of the call from an EXEC:

IMFEXEC SELECT EXEC(RSPA DEVICE MOUNTED ONLINE SIZE) WAIT(YES)

The following table lists the RSPA parameters.

Table 42. RSPA Parameters

Parameter Required? Description

DEVICE No If specified, must be mounted PUBLIC.
PRIVATE will select devices mounted
PRIVATE.

Note: DEVICE is required if MOUNTED or
ONLINE parameters are specified.

If ONLINE = ALL is specified, the DASD
information returned includes all OFFLINE
devices as well as those ONLINE devices that
meet the selection criteria.

ONLINE No Default is ONLINE. If specified, must be:

ONLINE
Selects ONLINE devices only.

OFFLINE
Selects OFFLINE devices only.

ONLINE = OFFLINE is mutually exclusive
with the MOUNTED and SIZE parameters.
MOUNTED and SIZE must be NULL if
ONLINE = OFFLINE is specified.

ALL
Selects OFFLINE and ONLINE devices.

If ONLINE = ALL is specified, the DASD
information returned includes all OFFLINE
devices as well as those ONLINE devices that
meet the selection criteria.
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs457

y.
Following is a list of return codes from RSTA:

Return Code Description

0 The returned information includes at least one complete DASD Unit entr
4 The returned information contains at least one incomplete (OFFLINE)

DASD unit entry (VOLUME = UNKNWN and all DASD space fields = 0).
8 No information was returned or security failure

An informational message RSPnnnx is displayed that specifies why no
information is returned.
RSPAROL1 is set to zero.

12 An unexpected error message was returned by the SYSPROG SPACE
service.
Message RSP015I displays the error message issued by the SYSPROG
SPACE service. RSPAROL1 is set to zero.

16 Invalid parameters passed to the RSPA service EXEC.
RSPAROL1 is set to zero.

SIZE No Default is 0.

ONLINE = OFFLINE is mutually exclusive with
the MOUNTED and SIZE parameters.
MOUNTED and SIZE must be NULL if ONLINE
= OFFLINE is specified.

If specified, must be a numeric value between 0
and 999. The RSPA service will return
information for ONLINE DASD volumes that
have more than nnn free space cylinders.

SORTFLD No Unit, VOLSER, FREE or CONTIG

Table 42. RSPA Parameters (Continued)

Parameter Required? Description
458 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 43 lists the variables returned by RSPA in the LOCAL POOL.

Table 43. Variables Returned by RSPA in the LOCAL POOL

Variable Name Type Description

RSPAROL1 Data Number of entries in the returned data array.

RSPAU(XXX) Data Unit number (device address)

RSPAV(XXX) Data Volume Name

Value is set to UNKNWN for OFFLINE
devices.

RSPAS(XXX) Data Device Mount Attribute:

OFFLINE OR

PRV (PRIVATE)

STR (STORAGE)

PUB (PUBLIC)

RSPAC(XXX) Data Number of free cylinders (0 if OFFLINE).

RSPAT(XXX) Data Number of free tracks (0 if OFFLINE).

RSPAG(XXX) Data Number of contiguous free cylinders (0 if
OFFLINE).

RSPAH(XXX) Data Number of contiguous free tracks (0 if
OFFLINE).
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs459

aking
RSTA: Retrieve Status of an Address Space

The RSTA EXEC retrieves the status of any or all tasks in the system.

If a task name is specified but not enabled in the system, RSTA sets a return code of 4, m
it easy to determine if a task is enabled.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RSTA TASKNAME) WAIT(YES)

Table 44 lists the RSTA parameters.

Following is a list of return codes from RSTA:

Return Code Description

0 Task is enabled
4 Task is not enabled
8 Security failure
12 Service timed out in interface
16 Invalid parameter specified

Table 45 lists the variables returned by RSTA in the LOCAL POOL.

Table 44. RSTA Parameters

Parameter Required? Description

TASKNAME No Specific task on which to retrieve status
information

Table 45. Variables Returned by RSTA in the LOCAL POOL

Variable Name Type Description

RSTAA(XXX) Data Address space ID

RSTAC(XXX) Data CPU time used

RSTAF(XXX) Data Real frame count

RSTAG(XXX) Data Performance group

RSTAN(XXX) Data Name of task

RSTAP(XXX) Data Performance period

RSTAQ(XXX) Data Dispatching queue

RSTAW(XXX) Data Working set size

RSTA1(XXX) Data Status 1

RSTA2(XXX) Data Status 2

RSTA2(ROL1) Control Number of output lines
460 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

RSYS: System Dump Data Sets Information

The RSYS EXEC retrieves information on all the system dump data sets.

An example of the use of the RSYS EXEC is given in the MSU005C EXEC.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RSYS) WAIT(YES)

There are no RSYS input parameters.

Following is a list of return codes from RSYS:

Return Code Description

4 Task is not enabled
8 Security failure

Table 46 lists the variables returned by RSYS in the LOCAL POOL.

Table 46. Variables Returned by RSYS in the LOCAL POOL

Variable Name Type Description

RSYSD(XXX) Data Day of month data set was filled

RSYSN(XXX) Data Name of full dump data set

RSYSROL1 Control Number of output lines

RSYST(XXX) Data Time data set was filled

RSYSG(XXX) Data Date of dump in MMM DD YYYY format

RSYSI(XXX) Data Title of the dump

RSYSS(XXX) Data Source of the dump
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs461

e, the

d by
RTPI: Teleprocessing Input/Output Information

The RTPI EXEC retrieves information on teleprocessing I/O (TP I/O) in the system. If a
parameter is passed, the information returned is only for the specified resource; otherwis
information for all TP I/O in the system is returned.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RTPI OPTS) WAIT(YES)

Table 47 lists the RTPI parameters.

Following is a list of return codes from RTPI:

Return Code Description

0 Request completed successfully
4 No outstanding I/O
8 Security failure

Table 48 lists the variables returned by RTPI The following table lists the variables returne
RTPI. in the LOCAL POOL.

Table 47. RTPI Parameters

Parameter Required? Description

OPTS No UCB or volume serial number

Table 48. Variables Returned by RTPI in the LOCAL POOL

Variable Name Type Description

RTPIA(XXX) Data Allocations

RTPID(XXX) Data Driver

RTPII(XXX) Data IOQ address

RTPIJ(XXX) Data Jobname using device

RTPIO(XXX) Data Opens

RTPIR(XXX) Data Reserves

RTPIROL1 Control Number of output lines

RTPIU(XXX) Data UCB of device

RTPIV(XXX) Data VOLSER of device (may be blank)
462 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ssed,
SO
RTSU: Information on TSO Users

The RTSU EXEC retrieves information on TSO users in the system. If a parameter is pa
the information returned is only for the specified TSO user; otherwise, information on all T
users is returned.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(RTSU OPTS) WAIT(YES)

Table 49 lists the RTSU parameters.

Following is a list of return codes from RTSU:

Return Code Description

0 Request completed successfully
4 Specified USER ID not found
8 Security failure
16 Specified USER ID greater than seven characters

Table 50 lists the variables returned by RTSU in the LOCAL POOL.

Table 49. RTSU Parameters

Parameter Required? Description

OPTS No TSO User ID

Table 50. Variables Returned by RTSU in the LOCAL POOL

Variable Name Type Description

RTSUA(XXX) Data ASID of TSO user

RTSUL(XXX) Data TCAM line number (0S for VTAM)

RTSUN(XXX) Data Node name used EXEC: N=LOOP CTR
T=TSO LINE COUNTER

RTSUROL1 Control Number of output lines

RTSUS(XXX) Data System (TCAM OR VTAM)

RTSUU(XXX) Data TSO user ID

RTSUUSER Control Number OF TSO users logged on
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs463

nto

o be

es

to
@TIMER: Interface to Timer Queues

The @TIMER EXEC provides a common interface to the timer queue functions.

Purpose

Use the @TIMER EXEC to introduce time-initiated EXECs (also called timer elements) i
AutoOPERATOR. Timer elements are EXECs which are automatically invoked at user-
specified intervals for a user-specified period of time. As an option, timer elements can als
invoked one at a time. Refer to theMAINVIEW AutoOPERATOR Basic Automation Guide for
more information about time-initiated EXECs.

Function

Use @TIMER to add or delete timer elements from the system. The specific function is
controlled by the input parameters you use. Table 51 lists the @TIMER parameters.

Deleting a timer element has 2 separate processes. The first issues anIMFEXEC IMFC
PRG=CALLX timername statements wheretimername is the name of the timer element to be
deleted from the system. The delete is performed by the AutoOPERATOR interval servic
task.

The second deletes the PROFILE pool variables that contain the parameters necessary
invoke and maintain the timer element.

The following statement shows the format of the call from the EXEC:

All parameters use keywords; the value must be enclosed in parentheses following the
keyword. Table 51 lists the @TIMER parameters.

IMFEXEC SELECT EXEC[@TIMER FUNC(ADD|DEL) PROC(execname) +
 TOD(HH:MM:SS) [or NEXTTIME(MMMM)] INTERVAL(HHcolon.MM:SS) +
 GOODFOR(MMMMM) [or RETAIN(YES|NO)] TARGETSS(subsys ID)
 REPLACE(YES|NO) +
 STOPTIME(HH:MM:SS) DEBUG(YES|NO|TRACE)] WAIT(YES)

Table 51. @TIMER Parameters

Parameter Required? Description

FUNC Yes Function to perform

Valid values are ADD or DEL(ete).

PROC Yes Name of an EXEC to schedule

TOD Yes Time at which to schedule the process

A valid time must be entered in
Hours:Minutes:Seconds format (HH:MM:SS).

Note: The NEXTTIME and TOD parameters
are mutually exclusive and cannot be
used together.
464 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

NEXTTIME Yes The amount of time (from current time) to
schedule the process

A valid time must be entered in MMMM format
where MMMM is an up-to 4 digit number.

The NEXTTIME parameter MMMM should not
result in a start time that is greater than 24 hours.
Therefore NEXTTIME should not be greater
than 1440.

Note: The NEXTTIME and TOD parameters
are mutually exclusive and cannot be
used together.

INTERVAL No Repetition interval

Specify a time in HH:MM:SS format that will
cause the the function to be repeated at set
intervals.

GOODFOR No The amount of time this timer element is good
for

A valid time must be entered in MMMM format
where MMMM is an up-to 4 digit number.

This value is used by the AutoOPERATOR
Sample Catch-Up Solution to determine whether
or not this element should be re-instated after an
AutoOPERATOR shutdown. The GOODFOR
time is converted into a time format used by
Catch-Up processing and compared against the
originally scheduled and current times to
determine reinstatability.

Note: The GOODFOR and RETAIN
parameters are mutually exclusive and
cannot be used together.

RETAIN No Retain for catchup processing

Valid values are YES or NO

When RETAIN(YES) is specified, it is the
number of minutes beyond the time specified in
TOD in which catch up processing will be valid.

Note: The GOODFOR and RETAIN
parameters are mutually exclusive and
cannot be used together.

TARGETSS No The subsystem ID (SYSID) of the target for
execution

Table 51. @TIMER Parameters (Continued)

Parameter Required? Description
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs465

e

REPLACE No Used on an ADD request to determine whether
or not a request should replace a current timer
element of the same name.

Valid values are YES or NO.

STOPTIME No Time to stop scheduling the process:

A valid time must be entered in
Hours:Minutes:Seconds format (HH:MM:SS).

DEBUG No Causes the display of debugging messages to b
issued to the BBI-SS PAS Journal during the
execution of @TIMER.

Valid values are YES, NO or TRACE. YES
causes informational messages to be issued by
@TIMER in the format SOLnnnt, NO (default)
causes no debugging messages to be written to
the BBI-SS PAS Journal. TRACE causes the
SOLnnnt messages, along with CONTROL
CON SYM and IMFEXEC CNTL LIST trace
output to be written to the BBI-SS PAS Journal.

Table 51. @TIMER Parameters (Continued)

Parameter Required? Description
466 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ts. If
t. An
es
quest

E
t
nt is
s the

s for
2E

onds
 and

ists.
es
ete then
 the

 If the
 and
Processing

When an ADD request is received, @TIMER determines if the timer element already exis
the element does not exist, a LIST variable is created to define and maintain the elemen
IMFEXEC IMFC SET REQ=CALLX command is also built and sent to the interval servic
task. The interval services task then prepares the internal control block that defines this re
and the timer element is ready to execute at the specified time.

If the timer element does exist (meaning that the LIST variable is present in the PROFIL
variable pool), @TIMER determines if this element will be replaced by checking the inpu
parameter REPLACE(). If the element is to be replaced, @TIMER determines if the eleme
pending delete (another request has already started the delete process) and if not, issue
command to delete the element to the interval services task.

If a delete is pending, an SOL230E message is issued and @TIMER waits up to 5 minute
the delete to finish. After 5 minutes, if the pending delete has not taken place, an SOL24
message is issued and the add request is discarded.

If the element is not to be replaced, @TIMER determines whether or not the element is
pending delete by another request. If the element is pending delete, @TIMER waits 30 sec
for the delete to complete. If that delete does not occur, an SOL240W message is issued
@TIMER deletes the timer element list variable and proceeds with the add request.

If the element is not pending delete, an SOL222E message is issued and the request is
discarded.

When a timer element delete is initiated, @TIMER first determines if the timer element ex
If it does exist, @TIMER issues the command to delete the element to the interval servic
task, sets the element to pending delete status and exits. The second process of the del
takes place as another invocation of @TIMER deletes the PROFILE variable that defines
timer element.

If the timer element does not exist, an SOL229E message is issued and @TIMER exits.
timer element is pending delete from another request, an SOL230E messages is issued
@TIMER exits.

Following is a list of return codes from @TIMER:

Return Code Description

0 Request completed successfully
4 Duplicate element found, ADD failed
8 Element not found, DELETE failed
16 Parameter error; refer to error message for further clarification
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs467

JES2DI: Retrieve Initiator Information

The JES2DI EXEC can be used to retrieve information on JES2 initiators.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(JES2DI 1 10) WAIT(YES)

Table 52 lists the JES2DI parameters.

Following is a list of return codes from JES2DI:

Return Code Description

0 Request completed successfully
8 Parameter errors
12 Command not completed due to timeout

Table 53 lists the variables returned by JES2DI in the LOCAL POOL.

Table 52. JES2DI Parameters

Parameter Required? Description

BINIT No Beginning initiator number for the display

EINIT No Ending initiator number for the display

Table 53. Variables Returned by JES2DI in the LOCAL POOL

Variable Name Type Description

JES2NOL Control Number of output lines

J2DINM(XX) Data Initiator number

J2DIST(XX) Data Status of the init

J2DIJNM(XX) Data Currently executing job number

J2DICLS(XX) Data Assigned classes
468 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

JES2DQ: Retrieve Execution Queue Information

Use the JES2DQ EXEC to retrieve information on JES2's execution queues.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(JES2DQ) WAIT(YES)

There are no input parameters to JES2DQ.

Following is a list of the return codes from JES2DQL:

Return Code Description

0 Request completed successfully
12 Command not completed due to timeout

Table 54 lists the variables returned by JES2DQ.

Table 54. Variables Returned by JES2DQ in the LOCAL POOL

Variable Type Description

JES2NOL Control Number of output lines

J2DQJNB(XX) Data Number of jobs in queue

J2DQCLS(XX) Data Class for this queue

J2DQSYS(XX) Data SYSID for this queue
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs469

CNVSECS: Convert HH:MM:SS Format to Seconds

Use the CNVSECS EXEC convert time in the HH:MM:SS format to seconds.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(CNVSECS TIMEIN) WAIT(YES)

Table 55 lists the CNVSECS parameters.

Following is a list of return codes from CNVSECS:

Return Code Description

0 Request completed successfully
8 Input parameter not in HH:MM:SS format
12 Input parameter not specified

Table 56 lists the variables returned by CNVSECS in the LOCAL POOL.

Table 55. CNVSECS Parameters

Parameter Required? Description

TIMEIN Yes Time in HH:MM:SS format

Table 56. Variables Returned by CNVSECS in the LOCAL POOL

Variable Type Description

SECSOUT Data Output time in seconds
470 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CNVTIME: Convert Time in Seconds to HH:MM:SS

Use the CNVTIME EXEC to convert time in seconds to HH:MM:SS format.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(CNVTIME SECSIN) WAIT(YES)

Table 57 lists the CNVTIME parameters.

Following is a list of return codes from CNVTIME:

Return Code Description

0 Request completed successfully
12 Input parameter not specified

Table 58 lists the variables returned by CNVTIME in the LOCAL POOL.

Table 57. CNVTIME Parameters

Parameter Required? Description

SECSIN Yes Time in seconds

Table 58. Variables Returned by CNVTIME in the LOCAL POOL

Variable Type Description

TIMEOUT Data Output time in HH:MM:SS format

CNVTDAY Data Number of days the output goes past the day
boundary
Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs471

472 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ted

EC

rst
Appendix A. SYSPROG EXEC Cross-Reference

Table 59 cross-references the SYSPROG service EXECs and variables. The table is sor
alphabetically by the SYSPROG service field name in the first column.

To use the table, review the left column to find the type of SYSPROG service EXEC
information you need. For each SYSPROG service field, there is a description of the EX
variable and the EXEC variable name.

The first four positions of the variable name indicate the EXEC name. For example, the fi
variable listed, RMDEA(XXX) is used in the utility EXEC RMDE. Refer to RMDE EXEC for
a full set of services available and the RMDEA(XXX) variable.

Table 59.SYSPROG Service EXEC and Variable Cross-Reference

SYSPROG Service Name EXEC Variable Description Variable Name

ACYL Determine I/O System Bottlenecks RMDEA(XXX)

ADDRESS OF VECTOR TABLE Storage/Paging/Slots RASMVTA

ADDRESS SPACE ID Return Status of Task(s) RSTAA(XXX)

ADDRESS SPACE START TIME Progress Report on Task RPROST

ALLOCATIONS Virtual Storage Address Space RIOAL(XXX)

ALLOCATIONS Interface to SYSPROG service TPIO RTPIA(XXX)

ASID OF TASK Virtual Storage Address Space RCSSA(XXX)

ASID OF TASK Basic Real Storage Information RRSMA(XXX)

ASID OF TSO USER TSO User System Information RTSUA(XXX)

AVAILABLE FRAMES (FREE) Basic Real Storage Information RRSMAFRM

AVAILABLE SLOTS Storage/Paging/Slots RASMSLAV

BURST Storage/Paging/Slots RASMB(XXX)

CHANNEL PATH Monitor Channel Path RMPAP(XXX)

COMMON FIXED FRAMES Basic Real Storage Information RRSMCFFR

COMMON FRAMES Basic Real Storage Information RRSMCFRM

CONNECT TIME Determine I/O System Bottlenecks RMDEC(XXX)

CPU ACCUMULATED IN LAST 30
SECONDS

Monitor Address Space RMONCPA

CPU LIMIT Progress Report on Task RPROLCPU

CPU NUMBER CPU/TSO/MVS Overhead RCPUC(XX)

CPU% BUSY CPU/TSO/MVS Overhead RCPUB(XX)

CPU TIME USED Return Status of Task(s) RSTAC(XXX)
Appendix A. SYSPROG EXEC Cross-Reference473

CSA PAGING RATE Paging/Demand Paging Information RPAGCSA

CSA USED ABOVE THE16M LINE Virtual Storage Address Space RCSSE(XXX)

CSA USED BELOW THE16M LINE Virtual Storage Address Space RCSSD(XXX)

CURRENT CONDITION SYSPROG service RESERVE Interface RRESC(XXX)

CURRENT STEP NUMBER Progress Report on Task RPROCS

CURRENTLY EXECUTING STEP Progress Report on Task RPROSTEP

DATE DATA SET WAS FILLED Interface to SYSDUMP Service RSYSD(XXX)

DECIMAL VERSION Progress Report on Task RPRODPTY

DEMAND PAGING RATE Paging/Demand Paging Information RPAGDMND

DEVICE BUSY Determine I/O System Bottlenecks RMDEB(XXX)

DEVICE UCB ADDRESS Determine I/O System Bottlenecks RMDEU(XXX)

DISCONNECT TIME Determine I/O System Bottlenecks RMDED(XXX)

DISPATCHING PRIORITY CPU/TSO/MVS Overhead RCPUD(XX)

DISPATCHING PRIORITY Progress Report on Task RPROPRTY

DISPATCHING QUEUE Return Status of Task(s) RSTAQ(XXX)

DRIVER Find ALL Outstanding Non-TP I/O RIODV(XXX)

DRIVER Interface to SYSPROG service TPIO RTPID(XXX)

ELAPSED TIME SINCE CTRS LAST

CLEARED

Paging/Demand Paging Information RPAGTIME

EXCPS ACCUMULATED IN LAST30
SECONDS

Monitor Address Space RMONEXA

FIRST12 WORDS OF MESSAGE SYSPROG service REPLIES Interface RREP1(XXX)
THROUGH

RREP9(XXX)

FIRST12 WORDS OF MESSAGE SYSPROG service REPLIES Interface RREP1.X.1-12

FIXED BELOW 16MB LINE Basic Real Storage Information RRSMB(XXX)

FIXED FRAMES Basic Real Storage Information RRSMFFRM

FIXED FRAMES BELOW16MB LINE Basic Real Storage Information RRSMB16M

FIXED STORAGE FRAMES Basic Real Storage Information RRSMF(XXX)

FREE SLOTS Storage/Paging/Slots RASMB(XXX)

IOQ ADDRESS Find ALL Outstanding Non-TP I/O RIOIA(XXX)

IOQ ADDRESS Interface to SYSPROG service TPIO RTPII(XXX)

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
474 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IPL TYPE Storage/Paging/Slots RASMIPLT

JES NUMBER OF TASK THAT ISSUED

WTOR

SYSPROG service REPLIES Interface RREPN(XXX)

JES NUMBER OF TASK THAT ISSUED

WTOR

SYSPROG service REPLIES Interface RREPN.X

JES2 JOB NUMBER Progress Report on Task RPRONUMB

JOB CLASS Progress Report on Task RPROCL

JOBNAME Storage/Paging/Slots RASMJ(XXX)

JOBNAME Find ALL Outstanding Non-TP I/O RIOJN(XXX)

JOBNAME Progress Report on Task RPRONAME

JOBNAME THAT REQUESTED MOUNT Tape or DASD Mount Requests RMPTJ(XXX)

JOBNAME USING DEVICE Interface to SYSPROG service TPIO RTPIJ(XXX)

JOBNAME WITH POSSIBLE RESERVE SYSPROG service service RESERVE InterfaceRRESJ(XXX)

LABEL OF VOLUME Storage/Paging/Slots RASML(XXX)

LARGEST SLOT USER Storage/Paging/Slots RASMSUSRX

LPA PAGING RATE Paging/Demand Paging Information RPAGLPA

LSQA FRAMES Basic Real Storage Information RRSML(XXX)

MAJOR NAME OF RESERVE SYSPROG service service RESERVE InterfaceRRESM(XXX)

MESSAGE CLASS Progress Report on Task RPROMSGC

MESSAGE LEVEL Progress Report on Task RPROMSGL

MINOR NAME OF RESERVE SYSPROG service RESERVE Interface RRESN(XXX)

NAME OF FULL DUMP DATA SET Interface to SYSDUMP Service RSYSN(XXX)

NAME OF JOB CPU/TSO/MVS Overhead RCPUN(XX)

NAME OF TASK Virtual Storage Address Space RCSSN(XXX)

NAME OF TASK Basic Real Storage Information RRSMN(XXX)

NAME OF TASK Return Status of Task(s) RSTAN(XXX)

NODE NAME EXEC N=LOOP CTR

T=TSO LINE CTR

TSO User Information RTSUN(XXX)

NON-VIO SLOTS Storage/Paging/Slots RASMN(XXX)

NUCLEUS FRAMES Basic Real Storage Information RRSMNFRM

NUMBER OF CPU RELATED OUTPUT

GROUPS

CPU/TSO/MVS Overhead RCPUROL3

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
Appendix A. SYSPROG EXEC Cross-Reference475

NUMBER/JOB RELATED OUTPUT

VARIABLE GRPS

CPU/TSO/MVS Overhead RCPUROL2

NUMBER OF OUTPUT LINES Monitor Channel Path RMPAROL1

NUMBER OF OUTPUT GROUPS Virtual Storage Address Space RCSSROL1

NUMBER OF OUTPUT LINES Find ALL Outstanding Non-TP I/O RIOROL1

NUMBER OF OUTPUT LINES Determine I/O System Bottlenecks RMDEROL1

NUMBER OF OUTPUT LINES SYSPROG service REPLIES Interface RREPROL1

NUMBER OF OUTPUT LINES Interface to SYSDUMP Service RSYSROL1

NUMBER OF OUTPUT LINES Interface to SYSPROG service TPIO RTPIROL1

NUMBER OF OUTPUT LINES TSO User System Information RTSUROL1

NUMBER OF SYSPROG SERVICE

OUTPUT LINES

Storage/Paging/Slots RASMROL1

NUMBER OF TSO USERS LOGGED ON TSO User System Information RTSUUSER

ONLINE FRAMES Basic Real Storage Information RRSMOFRM

OPENS Find ALL Outstanding Non-TP I/O RIOOP(XXX)

OPENS Interface to SYSPROG service TPIO RTPIO(XXX)

PAGE RECLAIM RATE Paging/Demand Paging Information RPAGRCLM

PAGES ACCUMULATED IN LAST30
SECONDS

Monitor Address Space RMONPAA

PAGING DEVICE Find ALL Outstanding Non-TP I/O RIOPD(XXX)

PEND TIME Determine I/O System Bottlenecks RMDEP(XXX)

PERCENT BUSY Monitor Channel Path RMPAB(XXX)

PERCENTAGE AVAILABLE Storage/Paging/Slots RASMSLPC

PERCENTAGE CPU USED Progress Report on Task RPROPCPU

PERCENTAGE FREE Storage/Paging/Slots RASMP(XXX)

PERCENTAGE LARGEST USER IS

HOLDING

Storage/Paging/Slots RASMV(XXX)

PERCENTAGE OF CPU USED BY BATCH CPU/TSO/MVS Overhead RCPUBATP

PERCENTAGE OF CPU IN

MVSOVERHEAD

CPU/TSO/MVS Overhead RCPUMVSP

PERCENTAGE OF CPU USED BY TSO CPU/TSO/MVS Overhead RCPUTSOP

PERCENTAGE OF CPU CPU/TSO/MVS Overhead RCPUU(XX)

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
476 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

PERCENTAGE OF ONLINE FRAMES

ALLOCATED

Basic Real Storage Information RRSMP(XXX)

PERFORMANCE GROUP Monitor Address Space RMONPG

PERFORMANCE GROUP Progress Report on Task RPROPG

PERFORMANCE GROUP Return Status of Task(s) RSTAG(XXX)

PERFORMANCE PERIOD Monitor Address Space RMONPP

PERFORMANCE PERIOD Progress Report on Task RPROPP

PERFORMANCE PERIOD Return Status of Task(s) RSTAP(XXX)

PRIORITY CPU/TSO/MVS Overhead RCPUP(XX)

PRIORITY IN APG RANGE NOTATION Monitor Address Space RMONDP

PRIORITY IN DECIMAL Monitor Address Space RMONHP

PRIVATE FIXED FRAMES Basic Real Storage Information RRSMPFFR

PRIVATE FRAMES Basic Real Storage Information RRSMPFRM

PROGRAM NAME Progress Report on Task RPROPGM

PROGRAMMER NAME Progress Report on Task RPROPGNM

Q LENGTH Determine I/O System Bottlenecks RMDEQ(XXX)

RATE Determine I/O System Bottlenecks RMDER(XXX)

REAL FRAME COUNT Return Status of Task(s) RSTAF(XXX)

REGION REQUESTED Progress Report on Task RPRORR

REGION USED Progress Report on Task RPRORU

REPLY NUMBER SYSPROG service REPLIES Interface RREPI(XXX)

REPLY NUMBER SYSPROG service REPLIES Interface RREPI.X

RESERVES Find ALL Outstanding Non-TP I/O RIORV(XXX)

RESERVES Interface to SYSPROG service TPIO RTPIR(XXX)

SECONDS OF CPU USED BY BATCH CPU/TSO/MVS Overhead RCPUBATT

SECONDS OF CPU IN MVS OVERHEAD CPU/TSO/MVS Overhead RCPUMSVO

SECONDS OF CPU USED CPU/TSO/MVS Overhead RCPUS(XX)

SECONDS OF CPU USED BY TSO CPU/TSO/MVS Overhead RCPUTSOT

SEEK Determine I/O System Bottlenecks RMDES(XXX)

SERVICE UNIT ACCUMM IN LAST 30
SEC.

Monitor Address Space RMONSUA

SIZE OF DATA SET IN SLOTS Storage/Paging/Slots RASMS(XXX)

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
Appendix A. SYSPROG EXEC Cross-Reference477

SQA FIXED FRAMES Basic Real Storage Information RRSMSFFR

SQA USED ABOVE THE16M LINE Virtual Storage Address Space RCSSC(XXX)

SQA USED BELOW THE16M LINE Virtual Storage Address Space RCSSB(XXX)

SRB TIME USED(STEP) Progress Report on Task RPROSRB

START LINE NUMBER OF PAGE D/S
INFORMATION

Storage/Paging/Slots RASMROL2

START LINE NUMBER OF MAP

INFORMATION

Storage/Paging/Slots RASMROL3

STATUS OF RESERVE SYSPROG service RESERVE Interface RRESS(XXX)

STATUS1(NSW LS PVL OUT GOI GOB

ENQ IN GOO)
Status of Task(s) RSTA1(XXX)

STATUS2(LS MS LW CP) Status of Task(s) RSTA2(XXX)

STEP NAME Monitor Address Space RMONSN

STEP START TIME Progress Report on Task RPROSS

STEP TOTAL CPU Progress Report on Task RPROSCPU

STORAGE FRAMES Basic Real Storage Information RRSMS(XXX)

SWAP PAGING RATE Paging/Demand Paging Information RPAGSWAP

SYSTEM(TCAM OR VTAM) TSO User System Information RTSUS(XXX)

SYSTEM ID The system ID of the issuer, x = line number RREPS.X

TASK NAME Monitor Address Space RMONJN

TASK NUMBER Monitor Address Space RMONNU

TASK TYPE (TSU STC JOB) Monitor Address Space RMONTT

TCAM LINE NUMBER(0S FOR VTAM) TSO User System Information RTSUL(XXX)

TCB TIME USED(STEP) Progress Report on Task RPROTCB

TIME DATA SET WAS FILLED Interface to SYSDUMP Service RSYST(XXX)

TOTAL CPU USED Monitor Address Space RMONCPT

TOTAL CSA USED Virtual Storage Address Space RCSSG(XXX)

TOTAL EXCPS Monitor Address Space RMONEXT

TOTAL NUMBER OF OUTPUT LINES CPU/TSO/MVS Overhead RCPUROL1

TOTAL PAGES Monitor Address Space RMONPAT

TOTAL PAGING RATE Paging/Demand Paging Information RPAGRATE

TOTAL SERVICE UNITS Monitor Address Space RMONSUT

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
478 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

TOTAL SLOTS Storage/Paging/Slots RASMTLSL

TOTAL SQA USED Virtual Storage Address Space RCSSF(XXX)

TOTAL STEPS Progress Report on Task RPROTS

TSO USERID TSO User System Information RTSUU(XXX)

TYPE OF JOB(STC BAT TSU) CPU/TSO/MVS Overhead RCPUT(XX)

TYPE OF JOB(STC TSO JOB) Progress Report on Task RPROTYPE

TYPE OF PAGE DATA SET Storage/Paging/Slots RASMT(XXX)

TYPE OF RESERVE SYSPROG service RESERVE Interface RREST(XXX)

TYPE OF UNIT Tape or DASD Mount Requests RMPTT(XXX)

TYPE/TASK ISSUING WTOR(STC TSU

JOB)
SYSPROG service REPLIES Interface RREPT(XXX)

TYPE/TASK ISSUING WTOR(STC TSU

JOB)
SYSPROG service REPLIES Interface RREPT.X

UCB OF DEVICE SYSPROG service RESERVE Interface RRESU(XXX)

UCB OF DEVICE Interface to SYSPROG service TPIO RTPIU(XXX)

UNIT ADDRESS Find ALL Outstanding Non-TP I/O RIOUA(XXX)

UNIT ADDRESS OF PAGE DATA SET Storage/Paging/Slots RASMU(XXX)

UNIT ADDRESS OF MOUNT Tape or DASD Mount Requests RMPTU(XXX)

VIO PAGING RATE Paging/Demand Paging Information RPAGVIO

VIO SLOTS Storage/Paging/Slots RASMUSPC

VIRTUAL USED ABOVE LINE Progress Report on Task RPROVUA

VIRTUAL USED BELOW LINE Progress Report on Task RPROVUB

VOLSER OF DEVICE SYSPROG service RESERVE Interface RRESV(XXX)

VOLSER OF DEVICE(MAY BE BLANK Interface to SYSPROG service TPIO RTPIV(XXX)

VOLSER OF REQUESTED VOLUME Tape or DASD Mount Requests RMPTV(XXX)

VOLUME SERIAL Find ALL Outstanding Non-TP I/O RIOVS(XXX)

VOLUME SERIAL Determine I/O System Bottlenecks RMDEV(XXX)

WORKING SET SIZE Basic Real Storage Information RRSMW(XXX)

WORKING SET SIZE Return Status of Task(s) RSTAW(XXX)

Table 59.SYSPROG Service EXEC and Variable Cross-Reference (Continued)

SYSPROG Service Name EXEC Variable Description Variable Name
Appendix A. SYSPROG EXEC Cross-Reference479

480 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

n with

n this

F

an

tion
r

Glossary

This glossary defines BMC Software terminology. Other dictionaries and glossaries can be used in conjunctio
this glossary.

Since this glossary pertains to BMC Software-related products, some of the terms defined might not appear i
book.

To help you find the information you need, this glossary uses the following cross-references:

A

action. Defined operation, such as modifying a MAINVIEW
window, that is performed in response to a command.See
object.

active window. Any MAINVIEW window in which data can
be refreshed.See alternate window, current window, window.

administrative view. Display from which a product’s
management tasks are performed, such as the DSLIST view
for managing historical data sets.See view.

ALT WIN field. Input field that allows you to specify the
window identifier for an alternate window where the results of
a hyperlink are displayed.See alternate window.

Alternate Access.See MAINVIEW Alternate Access.

alternate form. View requested through the FORM
command that changes the format of a previously displayed
view to show related information.See also form, query.

alternate window. (1) Window that is specifically selected
to display the results of a hyperlink. (2) Window whose
identifier is defined to the ALT WIN field.Contrast with
current window.See active window, window, ALT WIN field.

analyzer. (1) Online display that presents a snapshot of
status and activity data and indicates problem areas. (2)
Component of CMF MONITOR.See CMF MONITOR
Analyzer.

application. (1) Program that performs a specific set of tasks
within a MAINVIEW product. (2) In MAINVIEW VistaPoint,
combination of workloads to enable display of their
transaction performance data in a single view.

application trace. See trace.

ASCH workload. Workload comprising Advanced
Program-to-Program Communication (APPC) address spaces.

AutoCustomization. Online facility for customizing the
installation of products. AutoCustomization provides an ISP
panel interface that both presents customization steps in
sequence and provides current status information about the
progress of the installation.

automatic screen update.Usage mode wherein the currently
displayed screen is refreshed automatically with new data at
interval you specify. Invoked by the ASU command.

B

batch workload. Workload consisting of address spaces
running batch jobs.

BBI. Basic architecture that distributes work between
workstations and multiple OS/390 targets for BMC Software
MAINVIEW products.

BBI-SS PAS. See BBI subsystem product address space.

BBI subsystem product address space (BBI-SS PAS).
OS/390 subsystem address space that manages communica
between local and remote systems and that contains one o
more of the following products:

• Command MQ for S/390

• MAINVIEW AutoOPERATOR

• MAINVIEW for CICS

• MAINVIEW for DB2

• MAINVIEW for DBCTL

• MAINVIEW for IMS Online

• MAINVIEW for MQSeries

• MAINVIEW SRM

• MAINVIEW VistaPoint (for CICS, DB2, DBCTL, and
IMS workloads)

BBPARM. See parameter library.

BBPROC. See procedure library.

Contrast with Indicates a term that has a contrary or contradictory meaning.

See Indicates an entry that is a synonym or contains expanded information.

See also Indicates an entry that contains related information.
 Glossary 481

rds

fied

n

.

. In
s

.

to
BBPROF. See profile library.

BBSAMP. See sample library.

BBV. See MAINVIEW Alternate Access.

BBXS. BMC Software Subsystem Services. Common set of
service routines loaded into common storage and used by
several BMC Software MAINVIEW products.

border. Visual indication of the boundaries of a window.

bottleneck analysis.Process of determining which resources
have insufficient capacity to provide acceptable service levels
and that therefore can cause performance problems.

C

CA-Disk. Data management system by Computer Associates
that replaced the DMS product.

CAS. Coordinating address space. One of the address spaces
used by the MAINVIEW windows environment architecture.
The CAS supplies common services and enables
communication between linked systems. Each OS/390 or z/OS
image requires a separate CAS. Cross-system communication
is established through the CAS using VTAM and XCF
communication links.

CFMON. See coupling facility monitoring.

chart. Display format for graphical data.See also graph.

CICSplex. User-defined set of one or more CICS systems
that are controlled and managed as a single functional entity.

CMF MONITOR. Comprehensive Management Facility
MONITOR. Product that measures and reports on all critical
system resources, such as CPU, channel, and device usage;
memory, paging, and swapping activity; and workload
performance.

CMF MONITOR Analyzer. Batch component of CMF
MONITOR that reads the SMF user and 70 series records
created by the CMF MONITOR Extractor and/or the RMF
Extractor and formats them into printed system performance
reports.

CMF MONITOR Extractor. Component of CMF that
collects performance statistics for CMF MONITOR Analyzer,
CMF MONITOR Online, MAINVIEW for OS/390, and RMF
postprocessor.See CMF MONITOR Analyzer, CMF
MONITOR Online, MAINVIEW for OS/390.

CMF MONITOR Online. Component of CMF that uses the
MAINVIEW window interface to present data on all address
spaces, their use of various system resources, and the delays
that each address space incurs while waiting for access to these
resources.See CMF MONITOR, MAINVIEW for OS/390.

CMF Type 79 API. Application programming interface,
provided by CMF, that provides access to MAINVIEW SMF-
type 79 records.

CMFMON. Component of CMF MONITOR that simplifies
online retrieval of information about system hardware and
application performance and creates MAINVIEW SMF-type
79 records.

The CMFMONonline facilitycan be used to view data in one
or more formatted screens.

The CMFMONwrite facility can be used to write collected
data as MAINVIEW SMF-type 79 records to an SMF or
sequential data set.

CMRDETL. MAINVIEW for CICS data set that stores detail
transaction records (type 6E) and abend records (type 6D).
Detail records are logged for each successful transaction.
Abend records are written when an abend occurs. Both reco
have the same format when stored on CMRDETL.

CMRSTATS. MAINVIEW for CICS data set that stores both
CICS operational statistic records, at five-minute intervals,
and other records, at intervals defined by parameters speci
during customization (using CMRSOPT).

column. Vertical component of a view or display, typically
containing fields of the same type of information, that varies
by the objects associated in each row.

collection interval. Length of time data is collected.See also
delta mode, total mode.

command delimiter. Special character, usually a;
(semicolon), used to stack commands typed concurrently o
the COMMAND line for sequential execution.

COMMAND line. Line in the control area of the display
screen where primary commands can be typed.Contrast with
line command column.

Command MQ Automation D/S. Command MQ agents,
which provide local proactive monitoring for both MQSeries
and MSMQ (Microsoft message queue manager). The
Command MQ agents operate at the local node level where
they continue to perform functions regardless of the
availability of the MQM (message queue manager) network
Functionality includes automatic monitoring and restarts of
channels, queue managers, queues and command servers
cases where automated recovery is not possible, the agent
transport critical alert information to a central console.

Command MQ Automation S/390. Command MQ
component, which monitors the MQM (message queue
manager) networks and intercedes to perform corrective
actions when problems arise. Solutions include:

• Dead-Letter Queue management
• System Queue Archival
• Service Interval Performance solutions
• Channel Availability

These solutions help ensure immediate relief to some of the
most pressing MQM operations and performance problems

Command MQ for D/S. Command MQ for D/S utilizes a
true client/server architecture and employs resident agents
provide configuration, administration, performance
monitoring and operations management for the MQM
(message queue manager) network.
482 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

nt

t.

on

.
rm

.

Command MQ for S/390. See MAINVIEW for MQSeries.

COMMON STORAGE MONITOR. Component of
MAINVIEW for OS/390 that monitors usage and reconfigures
OS/390 or z/OS common storage blocks.

composite workload. Workload made up of a WLM
workload or other workloads, which are calledconstituent
workloads.

constituent workload. Member of a composite workload.
Constituent workloads in a composite usually belong to a
single workload class, but sometimes are mixed.

contention. Occurs when there are more requests for service
than there are servers available.

context. In a Plex Manager view, field that contains the name
of a target or group of targets specified with the CONTEXT
command.See scope, service point, SSI context, target
context.

CONTEXT command. Specifies either a MAINVIEW
product and a specific target for that product (see target
context) or a MAINVIEW product and a name representing
one or more targets (seeSSI context) for that product.

control statement. (1) Statement that interrupts a sequence of
instructions and transfers control to another part of the
program. (2) Statement that names samplers and other
parameters that configure the MAINVIEW components to
perform specified functions. (3) In CMF MONITOR,
statement in a parameter library member used to identify a
sampler in the extractor or a report in the analyzer, or to
describe either component’s processing requirements to the
operating system.

coupling facility monitoring (CFMON). Coupling facility
views that monitor the activity of your system’s coupling
facilities.

current data. Data that reflects the system in its current state.
The two types of current data are realtime data and interval
data.Contrast with historical data.See alsointerval data and
realtime data.

current window. In the MAINVIEW window environment,
window where the main dialog with the application takes
place. The current window is used as the default window
destination for commands issued on the COMMAND line
when no window number is specified.Contrast with alternate
window.See active window, window.

D

DASD. Direct Access Storage Device. (1) A device with
rotating recording surfaces that provides immediate access to
stored data. (2) Any device that responds to a DASD program.

data collector. Program that belongs to a MAINVIEW
product and that collects data from various sources and stores
the data in records used by views. For example, MAINVIEW
for OS/390 data collectors obtain data from OS/390 or z/OS
services, OS/390 or z/OS control blocks, CMF MONITOR

Extractor control blocks, and other sources.Contrast with
extractor.

delta mode. (1) In MAINVIEW for DB2 analyzer displays,
difference between the value sampled at the start of the curre
statistics interval and the value sampled by the current
analyzer request. See alsostatistics interval.(2) In CMFMON,
usage mode wherein certain columns of data reflect the
difference in values between one sample cycle and the nex
Invoked by the DELta ON command.See also collection
interval, sample cycle, total mode.

DFSMS. Data Facility Storage Management System. Data
management, backup, and HSM software from IBM for
OS/390 or z/OS mainframes.

DMR. See MAINVIEW for DB2.

DMS. Data Management System.See CA-Disk.

DMS2HSM. See MAINVIEW SRM DMS2HSM.

DSO. Data Set Optimizer. CMF MONITOR Extractor
component that uses CMF MONITOR Extractor data to
produce reports specifying the optimal ordering of data sets
moveable head devices.

E

EasyHSM. See MAINVIEW SRM EasyHSM.

EasyPOOL. See MAINVIEW SRM EasyPOOL.

EasySMS. See MAINVIEW SRM EasySMS.

element. (1) Data component of a data collector record,
shown in a view as a field. (2) Internal value of a field in a
view, used in product functions.

element help. Online help for a field in a view. The preferred
term isfield help.

Enterprise Storage Automation. See MAINVIEW SRM
Enterprise Storage Automation.

event. A message issued by Enterprise Storage Automation
User-defined storage occurrences generate events in the fo
of messages. These events provide an early warning system
for storage problems and are routed to user-specified
destinations for central viewing and management.

Event Collector. Component for MAINVIEW for IMS
Online, MAINVIEW for IMS Offline, and MAINVIEW for
DBCTL that collects data about events in the IMS
environment. This data is required for Workload Monitor and
optional for Workload Analyzer (except for the workload trace
service). This data also is recorded as transaction records
(X‘FA’) and program records (X‘F9’) on the IMS system log
for later use by the MAINVIEW for IMS Offline components:
Performance Reporter and Transaction Accountant.

expand. Predefined link from one display to a related display
See also hyperlink.
 Glossary 483

d
al

t

to

al

re
to
ed
m.

en

f
ore

l

extractor. Program that collects data from various sources
and keeps the data control blocks to be written as records.
Extractors obtain data from services, control blocks, and other
sources.Contrast with data collector.

extractor interval. See collection interval.

F

fast path. Predefined link between one screen and another.
To use the fast path, place the cursor on a single value in a
field and press Enter. The resulting screen displays more
detailed information about the selected value.See also
hyperlink.

field. Group of character positions within a screen or report
used to type or display specific information.

field help. Online help describing the purpose or contents of a
field on a screen. To display field help, place the cursor
anywhere in a field and press PF1 (HELP). In some products,
field help is accessible from the screen help that is displayed
when you press PF1.

filter. Selection criteria used to limit the number of rows
displayed in a view. Data that does not meet the selection
criteria is not displayed. A filter is composed of an element, an
operator, and an operand (a number or character string). Filters
can be implemented in view customization, through the
PARm/QPARm commands, or through the Where/QWhere
commands. Filters are established against elements of data.

fire. The term used to indicate that an event has triggered an
action. In MAINVIEW AutoOPERATOR, when a rule
selection criteria matches an incoming event andfires, the
user-specified automation actions are performed. This process
is also calledhandling the event.

fixed field. Field that remains stationary at the left margin of
a screen that is scrolled either right or left.

FOCAL POINT. MAINVIEW product that displays a
summary of key performance indicators across systems, sites,
and applications from a single terminal.

form. One of two constituent parts of a view; the other is
query. A form defines how the data is presented; a query
identifies the data required for the view. See alsoquery, view.

full-screen mode. Display of a MAINVIEW product
application or service on the entire screen. There is no window
information line.Contrast with windows mode.

G

global command. Any MAINVIEW window interface
command that can affect all windows in the window area of a
MAINVIEW display.

graph. Graphical display of data that you select from a
MAINVIEW window environment view.See also chart.

H

hilevel. For MAINVIEW products, high-level data set
qualifier required by a site’s naming conventions.

historical data. (1) Data that reflects the system as it existe
at the end of a past recording interval or the duration of sever
intervals. (2) Any data stored in the historical database and
retrieved using the TIME command.Contrast with current
data, interval data and realtime data.

historical database. Collection of performance data written
at the end of each installation-defined recording interval and
containing up to 100 VSAM clusters. Data is extracted from
the historical database with the TIME command.Seehistorical
data.

historical data set. In MAINVIEW products that display
historical data, VSAM cluster file in which data is recorded a
regular intervals.

HSM. (Hierarchical Storage Management) Automatic
movement of files from hard disk to slower, less-expensive
storage media. The typical hierarchy is from magnetic disk
optical disk to tape.

hyperlink. (1) Preset field in a view or an EXPAND line on a
display that permits you to

• Access cursor-sensitive help

• Issue commands

• Link to another view or display

The transfer can be either within a single product or to a
related display/view in a different BMC Software product.
Generally, hyperlinked fields are highlighted. (2) Cursor-
activated short path from a topic or term in online help to
related information.See also fast path.

I

Image log. Collection of screen-display records. Image logs
can be created for both the BBI-SS PAS and the BBI termin
session (TS).

The BBI-SS PAS Image log consists of two data sets that a
used alternately: as one fills up, the other is used. Logging
the BBI-SS PAS Image log stops when both data sets are fill
and the first data set is not processed by the archive progra

The TS Image log is a single data set that wraps around wh
full.

IMSPlex System Manager (IPSM).MVIMS Online and
MVDBC service that provides Single System Image views o
resources and bottlenecks for applications across one or m
IMS regions and systems.

interval data. Cumulative data collected during a collection
interval. Intervals usually last from 15 to 30 minutes
depending on how the recording interval is specified during
product customization.Contrast with historical data.

Note: If change is made to the workloads, a new interval wil
be started.

See alsocurrent data and realtime data.
484 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

gh

es

g

e,
InTune. Product for improving application program
performance. It monitors the program and provides
information used to reduce bottlenecks and delays.

IRUF. IMS Resource Utilization File (IRUF). IRUFs can be
either detail (one event, one record) or summarized (more than
one event, one record). A detail IRUF is created by processing
the IMS system log through a program called IMFLEDIT. A
summarized IRUF is created by processing one or more detail
IRUFs, one or more summarized IRUFs, or a combination of
both, through a sort program and the TASCOSTR program.

J

job activity view. Report about address space consumption
of resources.See view.

journal. Special-purpose data set that stores the
chronological records of operator and system actions.

Journal log. Collection of messages. Journal logs are created
for both the BBI-SS PAS and the BBI terminal session (TS).

The BBI-SS PAS Journal log consists of two data sets that are
used alternately: as one fills up, the other is used. Logging to
the BBI-SS PAS Journal log stops when both data sets are
filled and the first data set is not being processed by the
archive program.

The TS Journal log is a single data set that wraps around when
full.

L

line command. Command that you type in the line command
column in a view or display. Line commands initiate actions
that apply to the data displayed in that particular row.

line command column. Command input column on the left
side of a view or display.Contrast with COMMAND line.

Log Edit. In the MAINVIEW for IMS Offline program
named IMFLEDIT, function that extracts transaction (X‘FA’)
and program (X‘F9’) records from the IMS system log.
IMFLEDIT also extracts certain records that were recorded on
the system log by IMS. IMFLEDIT then formats the records
into a file called the IMS Resource Utilization File (IRUF).

M

MAINVIEW. BMC Software integrated systems
management architecture.

MAINVIEW Alarm Manager. In conjunction with other
MAINVIEW products, notifies you when an exception
condition occurs. MAINVIEW Alarm Manager is capable of
monitoring multiple systems simultaneously, which means
that MAINVIEW Alarm Manager installed on one system
keeps track of your entire sysplex. You can then display a
single view that show exceptions for all MAINVIEW
performance monitors within your OS/390 or z/OS enterprise.

MAINVIEW Alternate Access. Enables MAINVIEW
products to be used without TSO by providing access throu
EXCP and VTAM interfaces.

MAINVIEW Application Program Interface. REXX- or
CLIST-based, callable interface that allows MAINVIEW
AutoOPERATOR EXECs to access MAINVIEW monitor
product view data.

MAINVIEW AutoOPERATOR. Product that uses tools,
techniques, and facilities to automate routine operator tasks
and provide online performance monitoring, and that achiev
high availability through error minimization, improved
productivity, and problem prediction and prevention.

MAINVIEW control area. In the MAINVIEW window
environment, first three lines at the top of the view containin
the window information line and the COMMAND, SCROLL,
CURR WIN, and ALT WIN lines. The control area cannot be
customized and is part of the information display.Contrast
with MAINVIEW display area, MAINVIEW window area.

MAINVIEW display area. See MAINVIEW window area.

MAINVIEW Explorer. Product that provides access to
MAINVIEW products from a Web browser running under
Windows. MAINVIEW Explorer replaces MAINVIEW
Desktop.

MAINVIEW for CICS. Product (formerly MV MANAGER
for CICS) that provides realtime application performance
analysis and monitoring for CICS system management.

MAINVIEW for DB2. Product (formerly MV MANAGER
for DB2) that provides realtime and historical application
performance analysis and monitoring for DB2 subsystem
management.

MAINVIEW for DBCTL. Product (formerly MV
MANAGER for DBCTL) that provides realtime application
performance analysis and monitoring for DBCTL
management.

MAINVIEW for IMS (MVIMS) Offline. Product with a
Performance Reporter component that organizes data and
prints reports used to analyze IMS performance and a
Transaction Accountant component that produces cost
accounting and user charge-back records and reports.

MAINVIEW for IMS (MVIMS) Online. Product that
provides realtime application performance analysis and
monitoring for IMS management.

MAINVIEW for IP. Product that monitors OS/390 and z/OS
mission-critical application performance as it relates to
TCP/IP stack usage. Collected data includes availability,
connections, response times, routers, service levels, storag
traffic, Web cache, and so on.

MAINVIEW for Linux–Servers. Product that allows you to
monitor the performance of your Linux systems from the
MAINVIEW windows interface.

MAINVIEW for MQSeries. Delivers comprehensive
capabilities for configuration, administration, performance
monitoring and operations management for an entire MQM
(message queue manager) network.
 Glossary 485

cing

t

e

s

en

re

n

MAINVIEW for OS/390. System management application
(known as MAINVIEW for MVS prior to version 2.5). Built
upon the MAINVIEW window environment architecture, it
uses the window interface to provide access to system
performance data and other functions necessary in the overall
management of an enterprise.

MAINVIEW for UNIX System Services. System
management application that allows you to monitor the
performance of the Unix System Services from a MAINVIEW
window interface.

MAINVIEW for VTAM. Product that displays application
performance data by application, transaction ID, and LU
name. This collected data includes: connections, response
time statistics, application availability, and application
throughput.

MAINVIEW for WebSphere. Product that provides Web
monitoring and management for applications integrated with
IBM WebSphere Application Server for OS/390 or z/OS.

MAINVIEW Selection Menu. ISPF selection panel that
provides access to all MAINVIEW windows-mode and
full-screen mode products.

MAINVIEW SRM. See MAINVIEW Storage Resource
Manager (SRM).

MAINVIEW SRM DMS2HSM. Product that facilitates the
conversion of CA-Disk, formerly known as DMS, to HSM.

MAINVIEW SRM EasyHSM. Product that provides online
monitoring and reporting to help storage managers use
DFHSM efficiently.

MAINVIEW SRM EasyPOOL. Product that provides
control over data set allocation and enforcement of allocation
and naming standards. EasyPOOL functions operate at the
operating system level to intercept normal job processing, thus
providing services without any JCL changes.

MAINVIEW SRM EasySMS. Product that provides tools
that aid in the conversion to DFSMS and provides
enhancement to the DFSMS environment after
implementation. EasySMS consists of the EasyACS functions,
the SMSACSTE function, and the Monitoring and Positioning
Facility.

MAINVIEW SRM Enterprise Storage Automation.
Product that delivers powerful event generation and storage
automation technology across the storage enterprise. Used in
conjunction with MAINVIEW AutoOPERATOR, automated
solutions to perform pool, volume, application, or data set-
level manipulation can be created and used in response to any
condition or invoked to perform ad hoc requests

MAINVIEW SRM SG-Auto. Product that provides early
warning notification of storage anomalies and automated
responses to those anomalies based on conditions in the
storage subsystem.

MAINVIEW SRM SG-Control. Product that provides real-
time monitoring, budgeting, and control of DASD space
utilization.

MAINVIEW SRM StopX37/II. Product that provides
enhancements to OS/390 or z/OS space management, redu
the incidence of space-related processing problems. The
StopX37/II functions operate at the system level to intercep
abend conditions or standards violations, thus providing
services without any JCL changes.

MAINVIEW SRM StorageGUARD. Product that monitors
and reports on DASD consumption and provides historical
views to help control current and future DASD usage.

MAINVIEW Storage Resource Manager (SRM). Suite of
products that assists in all phases of OS/390 or z/OS storag
management. MAINVIEW SRM consists of products that
perform automation, reporting, trend analysis, and error
correction for storage management.

MAINVIEW SYSPROG Services. See SYSPROG Services.

MAINVIEW VistaPoint. Product that provides enterprise-
wide views of performance. Application and workload views
are available for CICS, DB2, DBCTL, IMS, and OS/390. Data
is summarized at the level of detail needed; for example, view
can be for a single target, an OS/390 or z/OS image, or an
entire enterprise.

MAINVIEW window area. Portion of the information
display that is not the control area and in which views are
displayed and windows opened. It includes all but the first
three lines of the information display.Contrast with
MAINVIEW control area.

monitor. Online service that measures resources or
workloads at user-defined intervals and issues warnings wh
user-defined thresholds are exceeded.

Multi-Level Automation (MLA). The user-defined, multiple
step process in Enterprise Storage Automation that
implements solutions in a tiered approach, where solutions a
invoked one after another until the condition is resolved.

MVALARM. See MAINVIEW Alarm Manager.

MVAPI. See MAINVIEW Application Program Interface.

MVCICS. See MAINVIEW for CICS.

MVDB2. See MAINVIEW for DB2.

MVDBC. See MAINVIEW for DBCTL.

MVIMS. See MAINVIEW for IMS.

MVIP. See MAINVIEW for IP.

MVLNX. See MAINVIEW for Linux–Servers.

MVMQ. See MAINVIEW for MQSeries.

MVMVS. See MAINVIEW for OS/390.

MVScope. MAINVIEW for OS/390 application that traces
both CPU usage down to the CSECT level and I/O usage dow
to the channel program level.

MVSRM. See MAINVIEW Storage Resource Manager
(SRM).
486 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

S

e

enu
MVSRMHSM. See MAINVIEW SRM EasyHSM.

MVSRMSGC. See MAINVIEW SRM SG-Control.

MVSRMSGD. SeeMAINVIEW SRM StorageGUARD.

MVSRMSGP. SeeMAINVIEW SRM StorageGUARD.

MVVP. See MAINVIEW VistaPoint.

MVVTAM. See MAINVIEW for VTAM.

MVWEB. See MAINVIEW for WebSphere.

N

nested help.Multiple layers of help pop-up windows. Each
successive layer is accessed by clicking a hyperlink from the
previous layer.

O

object. Anything you can manipulate as a single unit.
MAINVIEW objects can be any of the following: product,
secondary window, view, row, column, or field.

You can issue an action against an object by issuing a line
command in the line command column to the left of the object.
See action.

OMVS workload. Workload consisting of OS/390
OpenEdition address spaces.

online help. Help information that is accessible online.

OS/390 and z/OS Installer.BMC Software common
installation system for mainframe products.

OS/390 product address space (PAS).Address space
containing OS/390 or z/OS data collectors, including the CMF
MONITOR Extractor. Used by the MAINVIEW for OS/390,
MAINVIEW for Unix System Services, and CMF MONITOR
products.See PAS.

P

parameter library. Data set consisting of members that
contain parameters for specific MAINVIEW products or a
support component. There can be several versions:

• The distributed parameter library, called BBPARM

• A site-specific parameter library or libraries

These can be

– A library created by AutoCustomization, called
UBBPARM

– A library created manually, with a unique name

PAS. Product address space. Used by the MAINVIEW
products. Contains data collectors and other product functions.
See OS/390 product address space (PAS), BBI subsystem
product address space (BBI-SS PAS).

performance group workload. Collection of address spaced
defined to OS/390 or z/OS. If you are running OS/390 or z/O
with WLM in compatibility mode, MAINVIEW for OS/390
creates a performance group workload instead of a service
class.See service class workload, workload definition.

PERFORMANCE MANAGER. MAINVIEW for CICS
online service for monitoring and managing current
performance of CICS regions.

Performance Reporter (MVIMS Offline). MVIMS Offline
component that organizes data and prints reports that can b
used to analyze IMS performance.

Performance Reporter. Product component that generates
offline batch reports. The following products can generate
these reports:

• MAINVIEW for DB2

• MAINVIEW for CICS

Plex Manager. Product through which cross-system
communication, MAINVIEW security, and an SSI context are
established and controlled. Plex Manager is shipped with
MAINVIEW window environment products as part of the
coordinating address space (CAS) and is accessible as a m
option from the MAINVIEW Selection Menu.

PRGP workload. In MVS/SP 5.0 or earlier, or in
compatibility mode in MVS/SP 5.1 or later, composite of
service classes. MAINVIEW for OS/390 creates a
performance group workload for each performance group
defined in the current IEAIPSxx member.

procedure library. Data set consisting of members that
contain executable procedures used by MAINVIEW
AutoOPERATOR. These procedures are execute command
lists (EXECs) that automate site functions. There can be
several versions:

• The distributed parameter library, called BBPROC

• A site-specific parameter library or libraries

These can be

– A library created by AutoCustomization, called
UBBPROC

– A library created manually, with a unique name

The site-created EXECs can be either user-written or
customized MAINVIEW AutoOPERATOR-supplied EXECs
from BBPROC.

product address space.See PAS.
 Glossary 487

ch

n

 is

d a
d

w.

e

e

d
r

profile library. Data set consisting of members that contain
profile information and cycle refresh definitions for a terminal
session connected to a BBI-SS PAS. Other members are
dynamically created by MAINVIEW applications. There can
be several versions:

• The distributed profile library, called BBPROF

• A site-specific profile library or libraries

These can be

– A library created by AutoCustomization, called
SBBPROF

– A library created manually, with a unique name

The site library is a common profile shared by all site users.
The terminal session CLIST creates a user profile
automatically if one does not exist; it is called
userid.BBPROF, where userid is your logon ID. User profile
libraries allow each user to specify unique PF keys, CYCLE
commands, target system defaults, a Primary Option Menu,
and a unique set of application profiles.

Q

query. One of two constituent parts of a view; the other is
form. A query defines the data for a view; a form defines the
display format.See also form, view.

R

realtime data. Performance data as it exists at the moment of
inquiry. Realtime data is recorded during the smallest unit of
time for data collection.Contrast withhistorical data.See also
current data and interval data.

Resource Analyzer.Online realtime displays used to analyze
IMS resources and determine which are affected by specific
workload problems.

Resource Monitor. Online data collection services used to
monitor IMS resources and issue warnings when defined
utilization thresholds are exceeded.

row. (1) Horizontal component of a view or display
comprising all the fields pertaining to a single device, address
space, user, etc. (2) Horizontal component of a DB2 table
consisting of a sequence of values, one for each column of the
table.

RxD2. Product that provides access to DB2 from REXX. It
provides tools to query the DB2 catalog, issue dynamic SQL,
test DB2 applications, analyze EXPLAIN data, generate DDL
or DB2 utility JCL, edit DB2 table spaces, perform security
administration, and much more.

S

sample cycle.Time between data samples.

For the CMF MONITOR Extractor, this is the time specified
in the extractor control statements (usually 1 to 5 seconds).

For realtime data, the cycle is not fixed. Data is sampled ea
time you press Enter.

sample library. Data set consisting of members each of
which contains one of the following:

• Sample JCL that can be edited to perform specific
functions

• A macro that is referenced in the assembly of user-writte
services

• A sample user exit routine

There can be several versions:

• The distributed sample library, called BBSAMP

• A site-specific sample library or libraries

These can be

– A library created by AutoCustomization, called
UBBSAMP

– A library created manually, with a unique name

sampler. Program that monitors a specific aspect of system
performance. Includes utilization thresholds used by the
Exception Monitor. The CMF MONITOR Extractor contains
samplers.

SBBPROF. See profile library.

scope.Subset of an SSI context. The scope could be all the
data for the context or a subset of data within the context. It
user- or site-defined.See SSI context, target.

screen definition. Configuration of one or more views that
have been stored with the SAVEScr command and assigne
unique name. A screen includes the layout of the windows an
the view, context, system, and product active in each windo

selection view. In MAINVIEW products, view displaying a
list of available views.

service class workload.Collection of address spaces defined
to OS/390 or z/OS. If you are running Workload Manager
(WLM) in goal mode, MAINVIEW for OS/390 creates a
service class workload for each service class that you defin
through WLM definition dialogs.

If you are running MVS 4.3 or earlier, or MVS/SP 5.1 or later
with WLM in compatibility mode, MVS creates a
performance group workload instead of a service class.See
performance group workload.

service objective.Workload performance goal, specified in
terms of response time for TSO workloads or turnaround tim
for batch workloads. Performance group workloads can be
measured by either objective. Composite workload service
objectives consist of user-defined weighting factors assigne
to each constituent workload. For compatibility mode, neithe
OS/390 nor z/OS provides any way to measure service.
488 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

e
or

the

ct

e
ct

2

.

e

service point. Specification, to MAINVIEW, of the services
required to enable a specific product. Services can be actions,
selectors, or views. Each target (for example, CICS, DB2, or
IMS) has its own service point.

The PLEX view lists all the defined service points known to
the CAS to which the terminal session is connected.

service request block (SRB).Control block that represents a
routine to be dispatched. SRB mode routines generally
perform work for the operating system at a high priority. An
SRB is similar to a task control block (TCB) in that it
identifies a unit of work to the system.See also task control
block.

service select code.Code entered to invoke analyzers,
monitors, and general services. This code is also the name of
the individual service.

session.Total period of time an address space has been active.
A session begins when monitoring can be performed. If the
product address space (PAS) starts after the job, the session
starts with the PAS.

SG-Auto. See MAINVIEW SRM SG-Auto.

SG-Control. See MAINVIEW SRM SG-Control.

single system image (SSI).Feature of the MAINVIEW
window environment architecture where you can view and
perform actions on multiple OS/390 systems as though they
were a single system. The rows of a single tabular view can
contain rows from different OS/390 or z/OS images.

Skeleton Tailoring Facility. A facility in MAINVIEW
AutoOPERATOR that allows skeleton JCL to be used during
job submission. Skeleton JCL can contain variables within the
JCL statements to be substituted with data values at job
submission time. Directive statements can be used in the
skeleton JCL to cause the repetition of a set of skeleton
statements. This facility functions similar to the TSO skeleton
tailoring facility.

SRB. See service request block.

SSI. See single system image.

SSI context. Name created to represent one or more targets
for a given product.See context, target.

started task workload. Address spaces running jobs that
were initiated programmatically.

statistics interval. For MAINVIEW for DB2, cumulative
count within a predefined interval (30-minute default set by
the DB2STATS parameter in the distributed BBPARM
member BBIISP00) for an analyzer service DELTA or RATE
display. Specifying the DELTA parameter displays the current
value as the difference between the value sampled by the
current analyzer request and the value sampled at the start of
the current interval. Specifying the RATE parameter displays
the current value by minute (DELTA divided by the number of
elapsed minutes).

stem variables. A REXX facility, supported in MAINVIEW
AutoOPERATOR REXX EXECs and the Skeleton Tailoring
Facility, where variable names end with a period followed by a

number, such as &POOL.1. This configuration allows each
variable to actually represent a table or array of data, with th
zero variable containing the number of entries in the array. F
example, &POOL.0 = 5 would indicate variables &POOL.1
through &POOL.5 exist.

StopX37/II. See MAINVIEW SRM StopX37/II.

StorageGUARD. See MAINVIEW SRM StorageGUARD.

summary view. View created from a tabular view using the
Summarize option in view customization. A summary view
compresses several rows of data into a single row based on
summarize criteria.

SYSPROG services.Component of MAINVIEW for
OS/390. Over 100 services that detect, diagnose, and corre
OS/390 or z/OS system problems as they occur. Accessible
from the OS/390 Performance and Control Main Menu. Not
that this component is also available as a stand-alone produ
MAINVIEW SYSPROG Services.

system resource.See object.

T

target. Entity monitored by one or more MAINVIEW
products, such as an OS/390 or z/OS image, an IMS or DB
subsystem, a CICS region, or related workloads across
systems.See context, scope, SSI context.

target context. Single target/product combination.See
context.

TASCOSTR. MAINVIEW for IMS Offline program that
summarizes detail and summary IMS Resource Utilization
Files (IRUFs) to be used as input to the offline components

task control block (TCB). Address space-specific control
block that represents a unit of work that is dispatched in the
address space in which it was created.See alsoservice request
block.

TCB. See task control block.

terminal session (TS).Single point of control for
MAINVIEW products, allowing data manipulation and data
display and providing other terminal user services for
MAINVIEW products. The terminal session runs in a user
address space (either a TSO address space or a standalon
address space for EXCP/VTAM access).

TDIR. See trace log directory.

threshold. Specified value used to determine whether the
data in a field meets specific criteria.

TLDS. See trace log data set.

total mode. Usage mode in CMFMON wherein certain
columns of data reflect the cumulative value between
collection intervals. Invoked by the DELta OFF command.See
also collection interval, delta mode.
 Glossary 489

nd

r

f

s

d.

w
n

trace. (1) Record of a series of events chronologically listed
as they occur. (2) Online data collection and display services
that track transaction activity through DB2, IMS, or CICS.

trace log data set (TLDS).Single or multiple external
VSAM data sets containing summary or detail trace data for
later viewing or printing. The trace log(s) can be defined as
needed or dynamically allocated by the BBI-SS PAS. Each
trace request is assigned its own trace log data set(s).

trace log directory (TDIR). VSAM linear data set
containing one entry for each trace log data set. Each entry
indicates the date and time of data set creation, the current
status of the data set, the trace target, and other related
information.

transaction. Specific set of input data that initiates a
predefined process or job.

Transaction Accountant. MVIMS Offline component that
produces cost accounting and user charge-back records and
reports.

TS. See terminal session.

TSO workload. Workload that consists of address spaces
running TSO sessions.

U

UAS. See user address space.

UBBPARM. See parameter library.

UBBPROC. See procedure library.

UBBSAMP. See sample library.

user address space.Runs a MAINVIEW terminal session
(TS) in TSO, VTAM, or EXCP mode.

User BBPROF. See profile library.

V

view. Formatted data within a MAINVIEW window, acquired
from a product as a result of a view command or action. A
view consists of two parts: query and form.See alsoform, job
activity view, query.

view definition. Meaning of data that appears online,
including source of data, selection criteria for data field
inclusion and placement, data format, summarization, context,
product, view name, hyperlink fields, and threshold
conditions.

view command. Name of a view that you type on the
COMMAND line to display that view.

view command stack.Internal stack of up to 10 queries. For
each command, the stack contains the filter parameters, sort
order, context, product, and timeframe that accompany the
view.

view help. Online help describing the purpose of a view. To
display view help, place the cursor on the view name on the
window information line and press PF1 (HELP).

W

window. Area of the MAINVIEW screen in which views and
resources are presented. A window has visible boundaries a
can be smaller than or equal in size to the MAINVIEW
window area.See active window, alternate window, current
window, MAINVIEW window area.

window information line. Top border of a window. Shows
the window identifier, the name of the view displayed in the
window, the system, the scope, the product reflected by the
window, and the timeframe for which the data in the window
is relevant.See also window status field.

window number. Sequential number assigned by
MAINVIEW to each window when it is opened. The window
number is the second character in the window status field.See
also window status field.

window status. One-character letter in the window status
field that indicates when a window is ready to receive
commands, is busy processing commands, is not to be
updated, or contains no data. It also indicates when an erro
has occurred in a window. The window status is the first
character in the window status field.See also window
information line, window status field.

window status field. Field on the window information line
that shows the current status and assigned number of the
window.See also window number, window status.

windows mode. Display of one or more MAINVIEW product
views on a screen that can be divided into a maximum of 20
windows. A window information line defines the top border o
each window.Contrast with full-screen mode.

WLM workload. In goal mode in MVS/SP 5.1 and later, a
composite of service classes. MAINVIEW for OS/390 create
a workload for each WLM workload defined in the active
service policy.

workflow. Measure of system activity that indicates how
efficiently system resources are serving the jobs in a workloa

workload. (1) Systematic grouping of units of work (e.g.,
address spaces, CICS transactions, IMS transactions)
according to classification criteria established by a system
administrator. (2) In OS/390 or z/OS, a group of service
classes within a service definition.

workload activity view. Tracks workload activity as the
workload accesses system resources. A workload activity vie
measures workload activity in terms of resource consumptio
and how well the workload activity meets its service
objectives.

Workload Analyzer. Online data collection and display
services used to analyze IMS workloads and determine
problem causes.
490 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

workload definition. Workload created through the
WKLIST view. Contains a unique name, a description, an
initial status, a current status, and selection criteria by which
address spaces are selected for inclusion in the workload.See
Workload Definition Facility.

Workload Definition Facility. In MAINVIEW for OS/390,
WKLIST view and its associated dialogs through which
workloads are defined and service objectives set.

workload delay view. Tracks workload performance as the
workload accesses system resources. A workload delay view
measures any delay a workload experiences as it contends for
those resources.

Workload Monitor. Online data collection services used to
monitor IMS workloads and issue warnings when defined
thresholds are exceeded.

workload objectives. Performance goals for a workload,
defined in WKLIST. Objectives can include measures of
performance such as response times and batch turnaround
times.
 Glossary 491

492 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Index

Symbols
.RESET BLDL command

using to reset SYSPROC 79
@STATASK

utility EXEC 434
@TIMER

utility EXEC 464

A
AAOEXP00

specifying EXECs to the Priority queue 74
specifying multiple EXEC execution 75

High queue 75
MAXHIGH= 75
MAXNORM= 75
Normal queue 75

advanced techniques for AutoOPERATOR EXECs 87
determining the origin of an EXEC

using IMFORGN 91
using IMFORGSS 91

externally scheduling an EXEC 93
overview 87
scheduling messages and EXECs across targets 88
testing EXECs 99

ALERT
AOEXEC command 137
IMFEXEC command 241

ALERT-initiated EXECs
example with parameters 32
example without parameters 32
parameters passed 31
potential use 31

AOAnywhere
API implementation 131
implementing AOSUBX 131
installation requirements 130
overview 129
sysplex support 130

AOEXEC commands
ALERT 137

associating help panels 155
escalation examples 156–160
managing ALERT queues 156
multiline ALERTs 155
parameters 137–145
Return Codes for FUNCTION keywords 146
TSO variables returned from COUNT 154
TSO variables returned from LISTQ 154
TSO variables returned from READQ 152

coding conventions 136
MSG 161
NOTIFY 163
SELECT 165
summary 135

SYSINFO 167–170
VDEL 171
VDELL 181
VGET 174
VGETL 183
VLST 176, 176–178
VLSTL 185
VPUT 179
VPUTL 187

AOSUBX
parameters passed to

EXEC 133
TARGET 134

parameters passed to AOSUBX
WAIT 134

ARRAY INFO
ARYCOLN.n 204
ARYCOLW.n 204
ARYFILTER 204
ARYROWS 203

ARYROWS 203
assignment statements in REXX EXECs 14
asynchronously executing EXECs

See alsosynchronously executing EXECs
running EXECs under a new thread 78
using IMFEXEC SELECT 78

AutoOPERATOR
controlling EXEC execution 6, 9
invoking EXECs 4
overview 1
passing information 6
using CLIST 3
using REXX 3
using variables in EXECs 10

AutoOPERATOR EXECs
IMFEXEC BKPT 416
introduction 411

B
BKPT

IMFEXEC command 259
breakpoints

conditional 414
IMFEXEC statements 416
operator list 425
setting conditional 425
suspending programs 413
unconditional 413

browse
command

EXEC Test panel 419
built-in functions in REXX EXECs 16
 Index 493

C
CANcel

primary command 419
cancelling an EXEC 73, 81

See alsocontrolling EXEC execution
using .CANCEL 81

CANEXEC
utility EXEC 434

CHAP
IMFEXEC command 260

CICS 261–303
IMFEXEC command 261

CICSTRAN
IMFEXEC command 304

CLIST syntax
SeeREXX EXEC conventions

clock
TOD (time of day) 110

CMD
IMFEXEC command 305–319

CMDSHOW ON/OFF
primary command 419

CNTL
IMFEXEC command 321
using PERLIM(xx) 80
using TIMLIM(xx) 80

CNVSECS
utility EXEC 470

CNVTIME
utility EXEC 471

coding IMFEXECs
condition codes 240
general conventions 239
quotation mark usage 239
REXX coding 239
variable names 239

command restrictions in REXX EXECs 21
common function EXECs

RXBKLINE 108
RXQCHAR 108
RXQNUM 108
RXSAMPEX 108
RXSETSQL 109
RXVODS 109

compound variable
ISPF dialog 112

conditional breakpoints
BOOLEAN operators 414
command

EXEC Test panel 419
control panel 424
halting EXECs 424
setting capability 424
suspending programs 414

conditional statements in REXX EXECs 15
CONNECT

IMFEXEC ARRAY command 193
IMFEXEC MV command 221

CONTEXT

IMFEXEC MV command 223
CONTinue

primary command 419
control statements in REXX EXECs 14–15
controlling EXEC execution 73, 80–85

See alsoscheduling EXECs
displaying status of an EXEC 81

using .DISPLAY 81
setting time and CPU limits 80

overriding PEREXLIM 80
overriding TIMEXLIM 80
using PEREXLIM in AAOEXP00 80
using PERLIM(xx) 80
using TIMEXLIM in AAOEXP00 80
using TIMLIM(xx) 80

using BBI control commands
cancelling 80
disabling 80
enabling 80
using .CANCEL 81
using .START 81
using .STOP 81

CONVSTCK
convert time of day clock

special function 110
CREATE

IMFEXEC ARRAY command 195
cross-system scheduling

ALERTs 88
EXECs 88
IMF or MainView for DB2 commands 88
messages 88

CTOD
clock time of day

special function 110

D
defining targets

BBIJNT00 87
BBINOD00 87

DELETE
IMFEXEC ARRAY command 197

DELVARS
utility EXEC 435

determining the origin of an EXEC 87, 91
using IMFORGN 91

disabling an EXEC 81
See alsocontrolling EXEC execution
using .STOP 81

DISC
IMFEXEC ARRAY command 198

displaying source statements
EXEC test panel

using VAROFF command 421
displaying the status of an EXEC 81

using .DISPLAY 81
displaying variables

line command 421
494 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

primary command 421
TSO list 421

documentation box
example 27
REXX EXEC 27

DOM
IMFEXEC command 323

DROP
global variable environment 111

E
enabling an EXEC 81

See alsocontrolling EXEC execution
using .START 81

End-of-Memory-initiated EXECs 46
example 47
parameters passed 46
potential use 46

EXEC parameter
passed to AOSUBX 133
passed to IMFSUBEX 93

EXEC test control display
discussion of 418

EXEC test control panel
advanced format screen 419
field descriptions 418

EXEC test OSPI panel
columns descriptions 430

EXEC testing facility
accessing 417
breakpoints 413
conditional breakpoints 413
controlling execution 413
debugging EXECs 412
EXEC positions 418
full-screen interactive interface 413
line commands 421
maintaining delete requests 415
permanent data storage 430
SAVE feature 416
test trace panel 423
tracing EXECs 416
unconditional breakpoints 414
VGET command 415

EXEC testing option commands
C-conditional breakpoints 419
O-OSPI session display 419
V-variable access 419

EXEC-initiated EXECs 42
example 42
parameters passed 42
potential use 42

EXECs
common function 108

RXBKLINE 108
RXQCHAR 108
RXQNUM 108
RXSAMPEX 108

RXSETSQL 109
RXVODS 109

EXIT
IMFEXEC command 324

EXPAND
primary command 419

expressions in REXX EXECs 13
externally initiated EXECs 44

example 45
parameters passed 44
potential use 44

externally invoking EXECs 87
determining IMFORGN 91
determining return codes 95
parameters passed to AOSUBX

EXEC 133
TGTSS 134
WAIT 134

parameters passed to IMFSUBEX 93
EXEC 93
MSGLVLI 95
ORIGIN 94
SS 93
TARGET 94
VTS 95
WAIT 94

submitting 93
from a job step 96
from a TSO session 98
from within another program 98

using IMFSUBEX 93

F
F2C

floating point conversion
special function 110

field descriptions
EXEC test control panel

EXEC 418
ID 418

FIND
IMFEXEC ARRAY command 200

Find
primary command 419

floating point conversion 110
FORCE 419

primary command 419
FUNC

special function 110

G
GBLVAR

global variable environment 111
DROP 111
GETV 111
SETV 111
UPDV 111
 Index 495

special function 111
GET

IMFEXEC ARRAY command 202
GETDATA

IMFEXEC MV command 225
GETV

global variable environment 111

H
HB

IMFEXEC command 325
HELP PANEL

ALERT 159, 258
CICS 303
creating HELP panel for ALERTs 140, 244
help panels 155, 253
SELECT

completion codes for WAIT(YES) 351
user-written programs 351

I
IMFACCTG

TSO variables 54
IMFALID

TSO variables 54
IMFALPRI

TSO variables 54
IMFALQID

TSO variables 54
IMFALRM

TSO variables 54
IMFC

IMFEXEC command 326
IMFC SET PRG=CALLX

IMFEXEC command 329
IMFC SET REQ=CALLX

IMFEXEC command 331
IMFCC

TSO variables 54
IMFCNTXT

TSO variables 54
IMFCONID

TSO variables 54
IMFCONNM

TSO variables 55
IMFDAY

TSO variables 55
IMFDOMID

TSO variables 55
IMFEID

TSO variables 55
IMFENAME

TSO variables 55
IMFEVFRD

TSO variables 56
IMFEXEC ARRAY

overview 189

IMFEXEC ARRAY commands
CONNECT 193
CREATE 195
DELETE 197
DISC 198
FIND 200
GET 202
INFO 203
INSERT 205
LIST 206
PUT 207
SAVE 208
SET 209
SETVIEW 210
SORT 212

IMFEXEC BKPT
setting breakpoints 416

IMFEXEC commands 237
ALERT 241

FUNCTION keywords 249
TSO variables returned from COUNT 252
TSO variables returned from LISTQ 252
TSO variables returned from READQ 251

BKPT 259
CHAP 260
CICS 261–303

ACQUIRE 265
ALLOC 266
ALTER 267
ALTERVS 273
CEMT 274
CHAP 275
CICS dependent services 261
CICS independent services 262
CICSKEY 276
CLOSE 277
condition codes 261, 365
CONN 278
DISABLE 279
DROP 281
DUMPDB 282
ENABLE 283
FREE 285
INSERVE 286
ISOLATE 287
KILL TASK 288
KILL TERM 288
LOAD 291
NEWCOPY 292
OPEN 293
OUTSERVE 294
PURGE 295
QUERY 297
RECOVERDB 299
RELEASE 300
SPURGE 301
STARTDB 302
STOPDB 303

CICSTRAN 304
496 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD 305
BBI version with response 307
BBI version without response 306
IMS version with response 317
IMS version without response 315
MVS/JES version with response 310

CNTL 321
coding conventions 239
condition codes 240
creating multi-line ALERTs 242
DOM 323
EXIT 324
HB 325
IMFC 326
IMFC SET PRG=CALLX|ALL 329
IMFC SET REQ=CALLX 331
IMSTRAN 333
JES3CMD 334
LOGOFF 338
LOGON 339
MSG 341
NOTIFY 342
POST 343
quotation mark usage 239
RECEIVE 345
RES 346
REXX coding 239
REXX/CLIST formats 414
SCAN 348
SELECT 351
SEND 355
SESSINF 357
SETTGT 358
STDTIME 361
SUBMIT 362
TRANSMIT 375
TYPE 377
variable names 239
VCKP 379
VDCL 380
VDEL 382
VDELL 385
VDEQ 387
VENQ 388
VGET 390
VGETL 393
VLST 394
VLSTL 396
VPUT 398
VPUTL 401
WAIT 403
WAITLIST 404
WTO 406
WTOR 409

IMFEXEC MV commands 215
CONNECT 221
CONTEXT 223
GETDATA 225
RELEASE 227

TRACE 228
VIEW 230

IMFEXEC statements 413
showing EXEC history 423

IMFGROUP
TSO variables 56

IMFJCLAS
TSO variables 56

IMFJNUM
TSO variables 56

IMFJTYPE
TSO variables 56

IMFLPROD
TSO variables 56

IMFLTYPE
TSO variables 57

IMFLUSER
TSO variables 57

IMFMPFAU
TSO variables 57

IMFMPFSP
TSO variables 57

IMFMSTYP
TSO variables 57

IMFNOL
TSO variables 57

IMFOASID
TSO variables 57

IMFODATE
TSO variables 57

IMFODESC
TSO variables 57

IMFOJOB
TSO variables 58

IMFOQID
TSO variables 58

IMFORGN 91
TSO variables 59

IMFORGSS 91
TSO variables 59

IMFOROUT
TSO variables 55, 59

IMFOTIME
TSO variables 59

IMFPCMD
TSO variables 59

IMFPOST
TSO variables 59

IMFPRIO
TSO variables 59

IMFRC
TSO variables 59

IMFREPLY
TSO variables 60

IMFRLFRD
TSO variables 60

IMFRLID
TSO variables 60

IMFRLMAT
 Index 497

TSO variables 60
IMFRLSET

TSO variables 60
IMFRLSTA

TSO variables 60
IMFRUSER

TSO variables 60
IMFSCOPE

TSO variables 60
IMFSTOKN

TSO variables 60
IMFSUBEX 87

determining return codes 95
parameters passed to IMFSUBEX

EXEC 93
MSGLVLI 95
ORIGIN 94
SS 93
TARGET 94
VTS 95
WAIT 94

submitting 96
from a job step 96
from a TSO session 98
from within another program 98

using 93
IMFSYSID

TSO variables 60
IMFTEXT

TSO variables 60
IMFTOKEN

TSO variables 60
IMFVIEW

TSO variables 60
IMFWTCON

TSO variables 61
IMFWTDOM

TSO variables 60
IMFXOJOB

TSO variables 58
implementing an EXEC 79

See alsocontrolling an EXEC
IMSTRAN

IMFEXEC command 333
INFO

IMFEXEC ARRAY command 203
INSERT

IMFEXEC ARRAY command 205
introduction 411
invoking EXECs

completion codes 354
IMFCC and IMFRC 354

register contents 354
serialization 353
using IMFUxxxx prefix 353
using other programming languages 353

assembler 353
COBOL 353
PL/I 353

ISPF dialog
compound variable 112

J
JES2DI

utility EXEC 468
JES2DQ

utility EXEC 469
JES3CMD

IMFEXEC command 334
JESALLOC

IMFEXEC command 335
JESSUBM

IMFEXEC command 336

L
line commands

A - After breakpoint 421
B - Before breakpoint 421
delete 427
description of 421
O - Off removes breakpoints 421
select 427

LIST
IMFEXEC ARRAY command 206

LOCAL variables 54, 63–64
See alsovariables
using 61

Locate
primary command 419

logical states
breakpoints 413

LOGOFF
IMFEXEC command 338

LOGON
IMFEXEC command 339

M
MAINVIEW API

using 215
managing EXECs

across BBI-SS PASs and targets 88
examples 89

MSG
AOEXEC command 161
IMFEXEC command 341

MSGLVLI
passed to IMFSUBEX 95

multi-threading EXECs 70
to Normal queue 75
to Priority queue 75

MUT001C
utility EXEC 436
498 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

N
Normal queue 73

defining threads 73
multi-threading EXECS 75
scheduling EXECs 73
using MAXHIGH= 75
using MAXNORM= 75

NOTIFY
AOEXEC command 163
IMFEXEC command 342

O
OFF

primary command 419
Open Systems Procedural Interface

See alsoOSPI
operators

description of 424
operators in REXX EXECs 13
option commands

EXEC testing panel
B - browse EXEC output 419
C - conditional breakpoints 419
O - OSPI session display 419
V - variable access 419

origin of EXECs 91
determining 87

using IMFORGN 91
using IMFORGSS 91

ORIGIN parameter
passed to IMFSUBEX 94

OSPI 113
accessing the Scripting application 116
command

EXEC Test panel 419
customizing OSPI 114
customizing OSPI EXECs 124
debugging 126
disconnect feature 125
establishing a session 115
exchanging data 115
EXEC sessions 115
hot key 117
interacting with the Scripting application 119
interacting with VTAM applications 113
OSPI control variables 124
OSPISNAP 126
overview 113
receiving data 121
script development panel 117
scripting sessions 115
session termination panel 123
terminating a session 115
using OSPI 114
using passwords 125

OSPI EXECs
discussion of 415
example 415

testing sessions 430

P
P2C

unpack
special function 111

passing parameters to EXECs 23
pool field 426

adding values 428
values list 426

POOLS
literals 425
profile 415
profile test 415
shared 415
shared test 415

POST
IMFEXEC command 343

primary commands
add 427

Priority queue 73
defining threads 73
multi-threading EXECS 75
scheduling EXECs 74
using AAOEXP00 74

PROFILE pool 66
See alsovariables
using 61

programming formats
IBM REXX 411
IBM TSO CLIST 411

PUBLISH parameter
ALERT command 247
AOEXEC ALERT 143
examples 160

PUT
IMFEXEC ARRAY command 207

Q
QAOREL

SHARED variables 64
QGMADDR

SHARED variables 64
QGMLCLHB

SHARED variables 64
QGMLPORT

SHARED variables 64
QGMMSGL

SHARED variables 64
QGMNAME

SHARED variables 65
QGMRTC

SHARED variables 65
QGMRTI

SHARED variables 65
QGMSTAT

SHARED variables 65
 Index 499

QGMTGTHB
SHARED variables 64

QGMTRAPP
SHARED variables 65

QGMTRGME
SHARED variables 65

QGMTRSEC
SHARED variables 65

QGMWND
SHARED variables 65

QIMFID
SHARED variables 64

QIMGSTA
SHARED variables 64

QIMGSUF
SHARED variables 64

QIMSID
SHARED variables 64

QIMSNAME
SHARED variables 64

QIMSSTA
SHARED variables 64

QJNLSTA
SHARED variables 64

QJNLSUF
SHARED variables 64

QSMFID
SHARED variables 64

QSSNAME
SHARED variables 64

R
RASM

SYSPROG utility EXEC 437
RC

TSO variables 61
RCPU

SYSPROG utility EXEC 439
RCSS

SYSPROG utility EXEC 441
RECEIVE

IMFEXEC command 345
RELEASE

IMFEXEC MV command 227
RENQ

SYSPROG utility EXEC 442
RES

IMFEXEC command 346
RESULT

TSO variables 61
return codes

See alsoeach IMFEXEC command statement
from IMFSUBEX 95

REXX EXEC conventions
assignment statements 14
built-in functions 16
command restrictions 21
conditional statements 15

control statements 14
expressions 13
operators 13
TSO/E functions 19
TSO/E REXX commands 20
unsupported TSO commands 21

REXX EXECs 23
ALERT-initiated EXECs 31
defining the language 23–24
description 23
documentation box 27
documenting the EXEC 23, 27
EXEC-initiated EXECs 42
externally initiated EXECs 44
passing data 23, 24
Rule-initiated EXECs 29
time-initiated EXECs 38
user-initiated EXECs 36
writing logic 23, 28

REXX/CLIST formats
AutoOPERATOR EXECs 411
IMFEXEC commands 411

RIO
SYSPROG utility EXEC 443

RMDE
SYSPROG utility EXEC 444

RMON
SYSPROG utility EXEC 445

RMPA
SYSPROG utility EXEC 447

RMTP
SYSPROG utility EXEC 448

RPAG
SYSPROG utility EXEC 449

RPRO
SYSPROG utility EXEC 450

RREP
SYSPROG utility EXEC 452

RREPRX
SYSPROG utility EXEC 453

RRES
SYSPROG utility EXEC 454

RRSM
SYSPROG utility EXEC 455

RSPA
SYSPROG utility EXEC 457

RSTA
SYSPROG utility EXEC 460

RSYS
SYSPROG utility EXEC 461

RTPI
SYSPROG utility EXEC 462

RTSU
SYSPROG utility EXEC 463

Rule-initiated EXECs 29
example 30
parameters passed 29
potential use 29

RUN
500 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

primary command 419
running EXECs

Seecontrolling EXEC execution or scheduling EXECs
RXBKLINE

common function EXEC 108
RXQCHAR

common function EXEC 108
RXQNUM

common function EXEC 108
RXSAMPEX

common function EXEC 108
RXSETSQL

common function EXEC 109
RXVODS

common function EXEC 109

S
SAVE

IMFEXEC ARRAY command 208
SAVE feature

saving TSO variables 416
SCAN

IMFEXEC command 348
scheduling EXECs 73, 87

See alsocontrolling EXEC execution
across BBI-SS PASs and targets 88
defining threads 73
examples 89
using IMFEXEC commands 88
using Normal queue 73

multi-threading 75
using Priority queue 74

multi-threading 75
using AAOEXP00 74
using IMFEXEC SELECT PRI(HI) 75

SELECT 78
AOEXEC command 165
IMFEXEC command 351
invoking EXECs synchronously 78
using WAIT(YES) 78

SEND
IMFEXEC command 355

SESINF
IMFEXEC command 357

SET
IMFEXEC ARRAY command 209

SETTGT
IMFEXEC command 358

setting EXEC CPU limits
See alsosetting EXEC time limits
using TIMEXLIM in AAOEXP00 80
using TIMLIM(xx) 80

setting EXEC time limits
See alsosetting EXEC CPU limits
using PEREXLIM in AAOEXP00 80
using PERLIM(xx) 80

SETV
global variable environment 111

SETVIEW
IMFEXEC ARRAY command 210

SHARED variables 63
See alsovariables
QAOREL 64
QGMADDR 64
QGMLCLHB 64
QGMLPORT 64
QGMMSGL 64
QGMNAME 65
QGMRTC 65
QGMRTI 65
QGMSTAT 65
QGMTGTHB 64
QGMTRAPP 65
QGMTRGME 65
QGMTRSEC 65
QGMWND 65
QIMFID 64
QIMGSTA 64
QIMGSUF 64
QIMSID 64
QIMSNAME 64
QIMSSTA 64
QJNLSTA 64
QJNLSUF 64
QSMFID 64
QSSNAME 64
using 63

SIGL
TSO variables 61

skeleton tailoring
defined 489

SKIP
primary command 419

SORT
IMFEXEC ARRAY command 212

source statements
displaying 421
tracing interpreted 423

special functions
CONVSTCK 110
CTOD 110
F2C 110
GBLVAR 111
P2C 111
UENV 112
VARSPF 112
WAITSEC 112

SS parameter
passed to IMFSUBEX 93

STDTIME
IMFEXEC command 361

STEP
primary command 419

SUBMIT
IMFEXEC command 362
utility EXEC 436

SUBMITOR
 Index 501

utility EXEC 437
synchronously executing EXECs

See alsoasynchronously executing EXECs
running EXECs under the same thread 78
using IMFEXEC SELECT WAIT(YES) 78

syntax notation xx
SYSINFO

AOEXEC command 167
SYSPROG service fields and variables 473–479

T
TAILOR

IMFEXEC command 363
condition codes 365
examples 365, 368–374
parameters 363

target 87
defining

BBIJNT00 87
BBINOD00 87

TARGET parameter
passed to AOSUBX 134
passed to IMFSUBEX 94

testing
access to an EXEC 417
debugging example 413

testing EXECs 87, 99
using IMFEXEC CNTL NOCMD 100
using IMFEXEC CNTL NOCMD GLOBAL 101
using SHARED variables 102
without issuing WTOs 103

time-initiated EXECs 38
parameters passed 38
potential use 38

TOD
time of day clock 110

TRACE
IMFEXEC MV command 228

tracing interpreted source statements
showing EXEC history 423

TRANSMIT
IMFEXEC command 375

TSO variables
&IMFEROUT 55
&IMFXOJOB 58
See alsovariables
creating 54
IMFACCTG 54
IMFALID 54
IMFALPRI 54
IMFALQID 54
IMFALRM 54
IMFCC 54
IMFCNTXT 54
IMFCONID 54
IMFCONNM 55
IMFDAY 55
IMFDOMID 55

IMFEID 55
IMFENAME 55
IMFEVFRD 56
IMFGROUP 56
IMFJCLAS 56
IMFJNUM 56
IMFJTYPE 56
IMFLPROD 56
IMFLTYPE 57
IMFLUSER 57
IMFMPFAU 57
IMFMPFSP 57
IMFMSTYP 57
IMFNOL 57
IMFOASID 57
IMFODATE 57
IMFODESC 57
IMFOJOB 58
IMFOQID 58
IMFORGN 59
IMFORGSS 59
IMFOROUT 59
IMFOTIME 59
IMFPCMD 59
IMFPOST 59
IMFPRIO 59
IMFRC 59
IMFREPLY 60
IMFRLFRD 60
IMFRLID 60
IMFRLMAT 60
IMFRLSET 60
IMFRLSTA 60
IMFRUSER 60
IMFSCOPE 60
IMFSTOKN 60
IMFSYSID 60
IMFTEXT 60
IMFTOKEN 60
IMFVIEW 60
IMFWTCON 61
IMFWTDOM 60
modifiable TSO variables 61

RC 61
RESULT 61
SIGL 61

non-modifiable TSO variables 61
using 61

TSO/E functions 19
TSO/E REXX commands 20
TYPE

IMFEXEC command 377

U
UENV

hcename 112
pgm 112

special function 112
502 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

unconditional breakpoints 413
IMFEXEC commands 414
suspending programs 414

unpack
P2C

special function 111
unsupported REXX functions

XRANGE 21
unsupported TSO commands in REXX EXECs

Halt Interpretation (HI) 21
Halt Typing (HT) 21
Resume Typing (RT) 21
Trace End (TE) 21
Trace Start (TS) 21

UPDV
global variable environment 111

user-initiated EXECs 36
example 36, 40
parameters passed 36
potential use 36

utility EXECs 431–471
@STATASK 434
@TIMER 464
CANEXEC 434
CNVSECS 470
CNVTIME 471
DELVARS 435
JES2DI 468
JES2DQ 469
MUT001C 436
return codes 431
SUBMIT 436
SUBMITOR 437
SYSPROG utility EXECs

naming convention 431
RASM 437
RCPU 439
RCSS 441
RENQ 442
RIO 443
RMDE 444
RMON 445
RMPA 447
RMTP 448
RPAG 449
RPRO 450
RREP 452
RREPRX 453
RRES 454
RRSM 455
RSPA 457
RSTA 460
RSYS 461
RTPI 462
RTSU 463

V
variable pools 49

See alsovariables
retrieving data 69
saving data 67
using the LOCAL pool 61
using the PROFILE pool 66
using the SHARED pool 63
using the TSO pool 53

variable selection panel
name field 426
pool field 426

variable-name
conditional breakpoints panel 424

variables 49, 111
add/update panel 428
commands 428
compound 112
creating 428
GLOBAL 49

See alsoSHARED or PROFILE
hex on/off command 429
LOCAL

See alsoLOCAL variables
using 53

manipulating
using IMFEXEC VDCL 50
using IMFEXEC VDEL 50
using IMFEXEC VGET 50
using IMFEXEC VPUT 50

modifying 428
multi-threading EXECs 70
overview 49
PROFILE 49

See alsoPROFILE variables
using 66

retrieving data 69
saving data 67
SHARED 49

See alsoSHARED variables
list of 64
using 63

sharing data 70
TSO

See alsoTSO variables
list of 54
using 54

VARON/VAROFF
primary command 419

VARSPF
special function 112

VCKP
IMFEXEC command 379

VDCL
IMFEXEC command 380

VDEL
AOEXEC command 171
IMFEXEC command 382

VDELL
AOEXEC command 181
IMFEXEC command 385
 Index 503

VDEQ
IMFEXEC command 387

VENQ
IMFEXEC command 388

VGET
AOEXEC command 174
IMFEXEC command 390

VGETL
AOEXEC command 183
IMFEXEC command 393

VIEW
IMFEXEC MV command 230

VLST
AOEXEC command 176
IMFEXEC command 394

VLSTL
AOEXEC command 185
IMFEXEC command 396

VPUT
AOEXEC command 179
IMFEXEC command 398

VPUTL
AOEXEC command 187
IMFEXEC command 401

VTS parameter
passed to IMFSUBEX 95

W
WAIT

IMFEXEC command 403
WAIT parameter

passed to AOSUBX 134
passed to IMFSUBEX 94

WAITLIST
IMFEXEC command 404

WAITSEC
ALERT 241
special function 112

WTO
IMFEXEC command 406

WTOR
IMFEXEC command 409
504 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

STOP!

IMPORTANT INFORMATION - DO NOT INSTALL THIS PRODUCT UNLESS YOU HAVE READ
ALL OF THE FOLLOWING MATERIAL

By clicking the YES or ACCEPT button below (when applicable), or by installing and using this Product or by having it installed and
used on your behalf, You are taking affirmative action to signify that You are entering into a legal agreement and are agreeing to be
bound by its terms, EVEN WITHOUT YOUR SIGNATURE. BMC is willing to license this Product to You ONLY if You are willing to accept
all of these terms. CAREFULLY READ THIS AGREEMENT. If You DO NOT AGREE with its terms, DO NOT install or use this Product;
press the NO or REJECT button below (when applicable) or promptly contact BMC or your BMC reseller and your money will be
refunded if by such time You have already purchased a full-use License.

SOFTWARE LICENSE AGREEMENT FOR BMC PRODUCTS

SCOPE. This is a legally binding Software License Agreement ("License") between You (either an individual or an entity) and BMC pertaining to
the original computer files (including all computer programs and data stored in such files) contained in the enclosed Media (as defined below) or
made accessible to You for electronic delivery, if as a prerequisite to such accessibility You are required to indicate your acceptance of the terms
of this License, and all whole or partial copies thereof, including modified copies and portions merged into other programs (collectively, the
"Software"). "Documentation" means the related hard-copy or electronically reproducible technical documents furnished in association with the
Software, "Media" means the original BMC-supplied physical materials (if any) containing the Software and/or Documentation, "Product" means
collectively the Media, Software, and Documentation, and all Product updates subsequently provided to You, and "You" means the owner or
lessee of the hardware on which the Software is installed and/or used. "BMC" means BMC Software Distribution, Inc. unless You are located in
one of the following regions, in which case "BMC" refers to the following indicated BMC Software, Inc. subsidiary: (i) Europe, Middle East or Africa
--BMC Software Distribution, B.V., (ii) Asia/Pacific -- BMC Software Asia Pacific Pte Ltd., (iii) Brazil -- BMC Software do Brazil, or (iv) Japan -- BMC
Software K.K. If You enter into a separate, written software license agreement signed by both You and BMC or your authorized BMC
reseller granting to you the rights to install and use this Product, then the terms of that separate, signed agreement will apply and this
License is void.

FULL-USE LICENSE. Subject to these terms and payment of the applicable license fees, BMC grants You this non-exclusive License to install and
use one copy of the Software for your internal use on the number(s) and type(s) of servers or workstations for which You have paid or agreed to
pay to BMC or your BMC reseller the appropriate license fee. If your license fee entitles You only to a License having a limited term, then the
duration of this License is limited to that term; otherwise this License is perpetual, subject to the termination provisions below.

TRIAL LICENSE. If You have not paid or agreed to pay to BMC or your BMC Reseller the appropriate license fees for a full use license, then,
NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE : (i) this License consists of a non-exclusive evaluation
license ("Trial License") to use the Product for a limited time ("Trial Period") only for evaluation; (ii) during the Trial Period, You may not use the
Software for development, commercial, production, database management or other purposes than those expressly permitted in clause (i)
immediately above; and (iii) your use of the Product is on an AS IS basis, and BMC, ITS RESELLERS AND LICENSORS GRANT NO
WARRANTIES OR CONDITIONS (INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE) TO YOU AND ACCEPT NO LIABILITY WHATSOEVER RESULTING FROM THE USE OF THIS PRODUCT UNDER THIS TRIAL
LICENSE. If You use this Product for other than evaluation purposes or wish to continue using it after the Trial Period, you must purchase a
full-use license. When the Trial Period ends, your right to use this Product automatically expires, though in certain cases You may be able to
extend the term of the Trial Period by request. Contact BMC or your BMC reseller for details.

TERM AND TERMINATION. This License takes effect on the first to occur of the date of shipment or accessibility to You for electronic delivery, as
applicable (the "Product Effective Date"). You may terminate this License at any time for any reason by written notice to BMC or your BMC
reseller. This License and your right to use the Product will terminate automatically with or without notice by BMC if You fail to comply with any
material term of this License. Upon termination, You must erase or destroy all components of the Product including all copies of the Software, and
stop using or accessing the Software. Provisions concerning Title and Copyright, Restrictions (or Restricted Rights, if You are a U.S. Government
entity) or limiting BMC's liability or responsibility shall survive any such termination.

TITLE AND COPYRIGHT; RESTRICTIONS. All title and copyrights in and to the Product, including but not limited to all modifications thereto, are
owned by BMC and/or its affiliates and licensors, and are protected by both United States copyright law and applicable international copyright
treaties. You will not claim or assert title to or ownership of the Product. To the extent expressly permitted by applicable law or treaty
notwithstanding this limitation, You may copy the Software only for backup or archival purposes, or as an essential step in utilizing the Software,
but for no other purpose. You will not remove or alter any copyright or proprietary notice from copies of the Product. You acknowledge that the
Product contains valuable trade secrets of BMC and/or its affiliates and licensors. Except in accordance with the terms of this License, You agree
(a) not to decompile, disassemble, reverse engineer or otherwise attempt to derive the Software's source code from object code except to the
extent expressly permitted by applicable law or treaty despite this limitation; (b) not to sell, rent, lease, license, sublicense, display, modify, time
share, outsource or otherwise transfer the Product to, or permit the use of this Product by, any third party; and (c) to use reasonable care and
protection to prevent the unauthorized use, copying, publication or dissemination of the Product and BMC confidential information learned from
your use of the Product. You will not export or re-export any Product without both the written consent of BMC and the appropriate U.S.
and/ or foreign government license(s) or license exception(s). Any programs, utilities, modules or other software or documentation created,
developed, modified or enhanced by or for You using this Product shall likewise be subject to these restrictions. BMC has the right to obtain
injunctive relief against any actual or threatened violation of these restrictions, in addition to any other available remedies. Additional restrictions
may apply to certain files, programs or data supplied by third parties and embedded in the Product; consult the Product installation instructions or
Release Notes for details.

LIMITED WARRANTY AND CONDITION. If You have purchased a Full-Use License, BMC warrants that (i) the Media will be, under normal use,
free from physical defects, and (ii) for a period of ninety (90) days from the Product Effective Date, the Product will perform in substantial
accordance with the operating specifications contained in the Documentation that is most current at the Product Effective Date. BMC's entire
liability and your exclusive remedy under this provision will be for BMC to use reasonable best efforts to remedy defects covered by this warranty

and condition within a reasonable period of time or, at BMC's option, either to replace the defective Product or to refund the amount paid by You to
license the use of the Product. BMC and its suppliers do not warrant that the Product will satisfy your requirements, that the operation of the
Product will be uninterrupted or error free, or that all software defects can be corrected. This warranty and condition shall not apply if: (i) the
Product is not used in accordance with BMC's instructions, (ii) a Product defect has been caused by any of your or a third party's malfunctioning
equipment, (iii) any other cause within your control causes the Product to malfunction, or (iv) You have made modifications to the Product not
expressly authorized in writing by BMC. No employee, agent or representative of BMC has authority to bind BMC to any oral representations,
warranties or conditions concerning the Product. THIS WARRANTY AND CONDITION IS IN LIEU OF ALL OTHER WARRANTIES AND
CONDITIONS. THERE ARE NO OTHER EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS, INCLUDING THOSE OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THIS LICENSE OR ANY PRODUCT LICENSED
HEREUNDER. THIS PARAGRAPH SHALL NOT APPLY TO A TRIAL LICENSE. Additional support and maintenance may be available for an
additional charge; contact BMC or your BMC reseller for details.

LIMITATION OF LIABILITY. Except as stated in the next succeeding paragraph, BMC's and your BMC reseller's total liability for all damages in
connection with this License is limited to the price paid for the License. IN NO EVENT SHALL BMC BE LIABLE FOR ANY CONSEQUENTIAL,
SPECIAL, INCIDENTAL, PUNITIVE OR INDIRECT DAMAGES OF ANY KIND ARISING OUT OF THE USE OF THIS PRODUCT (SUCH AS
LOSS OF PROFITS, GOODWILL, BUSINESS, DATA OR COMPUTER TIME, OR THE COSTS OF RECREATING LOST DATA), EVEN IF BMC
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some jurisdictions do not permit the limitation of consequential damages so
the above limitation may not apply.

INDEMNIFICATION FOR INFRINGEMENT. BMC will defend or settle, at its own expense, any claim against You by a third party asserting that
your use of the Product within the scope of this License violates such third party's patent, copyright, trademark, trade secret or other proprietary
rights, and will indemnify You against any damages finally awarded against You arising out of such claim. However, You must promptly notify BMC
in writing after first receiving notice of any such claim, and BMC will have sole control of the defense of any action and all negotiations for its
settlement or compromise, with your reasonable assistance. BMC will not be liable for any costs or expenditures incurred by You without BMC's
prior written consent. If an order is obtained against your use of the Product by reason of any claimed infringement, or if in BMC's opinion the
Product is likely to become the subject of such a claim, BMC will at its option and expense either (i) procure for You the right to continue using the
product, or (ii) modify or replace the Product with a compatible, functionally equivalent, non-infringing Product, or (iii) if neither (i) nor (ii) is
practicable, issue to You a pro-rata refund of your paid license fee(s) proportionate to the number of months remaining in the 36 month period
following the Product Effective Date. This paragraph sets forth your only remedies and the total liability to You of BMC, its resellers and licensors
arising out of such claims.

GENERAL. This License is the entire understanding between You and BMC concerning this License and may be modified only in a mutually
signed writing between You and BMC. If any part of it is invalid or unenforceable, that part will be construed, limited, modified, or, severed so as to
eliminate its invalidity or unenforceability. This License will be governed by and interpreted under the laws of the jurisdiction named below, without
regard to conflicts of law principles, depending on which BMC Software, Inc. subsidiary is the party to this License: (i) BMC Software Distribution,
Inc. - the State of Texas, U.S.A., (ii) BMC Software Distribution, B.V. - The Netherlands, (iii) BMC Software Asia Pacific Pte Ltd. -- Singapore (iv)
BMC Software do Brazil -- Brazil, or (v) BMC Software K.K. -- Japan. Any person who accepts or signs changes to the terms of this License
promises that they have read and understood these terms, that they have the authority to accept on your behalf and legally obligate You to this
License. Under local law and treaties, the restrictions and limitations of this License may not apply to You; You may have other rights and
remedies, and be subject to other restrictions and limitations.

U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE UNITED
STATES. Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in FAR Section 52.227-14 Alt. III (g)(3), FAR
Section 52.227-19, DFARS 252.227-7014 (b) or DFARS 227.7202, as amended from time to time. Contractor/Manufacturer is BMC Software, Inc.,
2101 CityWest Blvd., Houston, TX 77042-2827, USA. Any contract notices should be sent to this address.

Notes

100042409
100042409
100042409
100042409

100042409

	MAINVIEW® AutoOPERATOR™
	Advanced Automation Guide
	for REXX EXECs
	Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment
	Overview
	Choosing the EXEC Language: REXX or CLIST
	Invoking AutoOPERATOR EXECs
	Passing Information to REXX EXECs
	Controlling EXEC Execution
	Using Variables in AutoOPERATOR EXECs

	Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs
	Using Expressions and Operators in REXX EXECs
	Using Control Statements in REXX EXECs
	Using Assignment Statements in REXX EXECs
	Using Conditional Statements in REXX EXECs
	Using Built-In Functions in REXX EXECs
	Using TSO/E Functions for REXX EXECs
	Using TSO/E REXX Commands in REXX EXECs
	Restrictions in REXX EXECs

	Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR
	Understanding the Four Components of a REXX EXEC
	Defining the Language
	Passing Data
	Documenting REXX EXECs
	Writing the Logic Section

	Describing AutoOPERATOR REXX EXECs
	Rule-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	ALERT-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example 1: ALERT-Initiated EXEC without Optional Parameters
	Describing the Example
	Example 2: ALERT-Initiated EXEC with Optional Parameters
	Describing the Example

	User-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Time-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	EXEC-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Externally Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	End-of-Memory–Initiated REXX EXEC
	Potential Use
	Parameters Passed to the EXEC
	Example

	Chapter 4. Using Variables in REXX EXECs
	Overview
	Using a TSO Variable Pool
	TSO Variables Supplied by AutoOPERATOR
	TSO Modifiable Control Variables
	TSO Non-Modifiable Control Variables

	Using LOCAL Variables and Pools
	Using SHARED Variables and Pools
	Serializing Variables
	AutoOPERATOR-Supplied SHARED Variables

	Using the PROFILE Pool
	Serializing Variables

	Saving Data in a Variable Pool
	Potential Use
	Describing the Example
	Example

	Retrieving Data from a Variable Pool
	Potential Use
	Describing the Example
	Example

	Sharing Variables while Multi-Threading EXECs
	Potential Use
	Describing the Example
	Example

	Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages
	Potential Use
	Describing the Example
	Example

	Chapter 5. Controlling EXEC Execution
	Scheduling EXECs
	Defining Threads
	Scheduling EXECs to the Normal Queue
	Scheduling EXECs to the Priority Queue
	Multi-Threading EXECs to the Normal or Priority Queue

	Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)
	Implementing an EXEC
	Controlling EXEC Execution
	Setting Time and CPU Limits for EXECs
	Displaying EXEC Execution Status
	Cancelling, Stopping, and Starting EXEC Execution

	Analyzing EXEC Performance Using the EXEC Management Application
	Using the SORT Command in the EXEC-Management Application

	Writing EXECs that Display CPU Consumption

	Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs
	Overview
	Scheduling Messages and EXECs Across BBI-SS PASs
	Examples

	Determining the Origin of a Command or EXEC
	Example - Determining the Origin of a User-Initiated EXEC

	Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
	Determining Return Codes from IMFSUBEX
	Submission from a Job Step
	Submission from a TSO Session
	Submission from within Another Program

	Testing EXECs
	Testing EXECs with IMFEXEC CNTL NOCMD Statements
	Testing EXEC with REXX Statement TRACE R
	Testing EXECs with SHARED Variables
	Testing EXECs without Issuing WTOs

	REXX EXEC Considerations
	Minimizing EXEC Processing Time
	Using VLF to Improve Performance

	Chapter 7. Accessing DB2 from AutoOPERATOR
	Access DB2 from REXX EXECs with RxD2/LINK
	RxD2/LINK Common Functions for REXX EXECs
	RxD2/LINK Special Functions for REXX EXECs

	Chapter 8. Interacting with VTAM-Applications with OSPI
	Overview
	When to Use OSPI
	How to Use OSPI
	Customization Required to Use OSPI
	OSPI Sessions
	Establishing a Session
	Exchanging Data
	Terminating a Session

	OSPI Scripting Application
	Accessing the OSPI Scripting Application
	OSPI Script Development Panel
	Interacting with the Application
	Receive Complete Detection
	Retrieving Screen Data into Variables
	Application Termination

	Customizing OSPI EXECs
	OSPI Control Variables
	Disconnect/Reconnect Feature
	Establishing Multiple Sessions
	Using Passwords in OSPI EXECs

	OSPI Debugging Facilities
	Return Codes
	Error Messages
	OSPI Control Variables
	OSPISNAP
	OSPI Session Termination Panel

	Chapter 9. Performing Automation Using AOAnywhere
	Overview
	Sysplex Support

	Why Use AOAnywhere
	Installation Requirements
	API Implementation under REXX and CLIST
	Differences between IMFEXEC and AOEXEC Parameter Syntax

	Implementing the AOAnywhere Batch Interface: AOSUBX
	Why Use AOSUBX

	AOEXEC Commands
	General Coding Conventions
	Using Variable Names
	Reading Return Codes
	Understanding Command Statement Syntax

	AOEXEC ALERT
	Return Codes for FUNCTION Keywords
	TSO Variables Returned from the READQ Parameter
	TSO Variables Returned from COUNT
	TSO Variables Returned from LISTQ

	AOEXEC MSG
	AOEXEC NOTIFY
	AOEXEC SELECT
	AOEXEC SYSINFO
	AOEXEC VDEL
	AOEXEC VGET
	AOEXEC VLST
	AOEXEC VPUT
	AOEXEC VDELL
	AOEXEC VGETL
	AOEXEC VLSTL
	AOEXEC VPUTL

	Chapter 10. Accessing Array Data with AutoOPERATOR EXECs
	Overview
	When Are Arrays Useful

	IMFEXEC ARRAY Commands
	General Coding Conventions
	Using Variable Names
	Reading Condition Codes

	ARRAY CONNECT
	ARRAY CREATE
	ARRAY DELETE
	ARRAY DISC
	ARRAY FIND
	ARRAY GET
	ARRAY INFO
	ARRAY INSERT
	ARRAY LIST
	ARRAY PUT
	ARRAY SAVE
	ARRAY SET
	ARRAY SETVIEW
	ARRAY SORT

	Chapter 11. Using the MAINVIEW API
	Overview
	What Is the MAINVIEW API
	Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS
	Using the IMFEXEC MAINVIEW Commands

	General Coding Conventions
	Using Variable Names
	Reading Condition Codes

	MAINVIEW CONNECT
	MAINVIEW CONTEXT
	MAINVIEW GETDATA
	MAINVIEW RELEASE
	MAINVIEW TRACE
	MAINVIEW VIEW
	Sample Program

	Chapter 12. Using the IMFEXEC Statements
	General Coding Conventions
	REXX Coding
	Using Quotation Marks
	Using Variable Names
	Reading Condition Codes

	ALERT
	FUNCTION Keywords
	TSO Variables Returned from the READQ Parameter
	TSO Variables Returned from COUNT
	TSO Variables Returned from LISTQ

	BKPT
	CHAP
	CICS
	Condition Codes

	CICS Command Parameters
	CICS ACQUIRE
	CICS ALLOC
	CICS ALTER
	CICS ALTERVS
	CICS CEMT
	CICS CHAP
	CICS CICSKEY
	CICS CLOSE
	CICS CONN
	CICS DISABLE
	CICS DROP
	CICS DUMPDB
	CICS ENABLE
	CICS FREE
	CICS INSERVE
	CICS ISOLATE
	CICS KILL
	CICS LOAD
	CICS NEWCOPY
	CICS OPEN
	CICS OUTSERVE
	CICS PURGE
	CICS QUERY
	CICS RECOVERDB
	CICS RELEASE
	CICS SPURGE
	CICS STARTDB
	CICS STOPDB

	CICSTRAN
	CMD
	CMD (Issue BBI Command without Response)
	CMD (Issue BBI Command with Response)
	CMD (MVS Version with Response through X-MCS Consoles)
	CMD (Issue IMS Command without Response)
	CMD (Issue IMS Command with Response)

	CNTL
	DOM
	EXIT
	HB
	IMFC
	IMFC SET PRG=CALLX|ALL
	IMFC SET REQ=CALLX
	IMSTRAN
	JES3CMD
	JESALLOC
	JESSUBM
	LOGOFF
	LOGON
	MSG
	NOTIFY
	POST
	RECEIVE
	RES
	SCAN
	Using Parameters

	SELECT
	Using Other Programming Languages
	Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YES) and User Written Programs

	SEND
	SESSINF
	SETTGT
	SHARE
	STDTIME
	SUBMIT
	TAILOR
	Condition Codes
	IMFEXEC TAILOR Processing
	Variable Substitution
	Examples of Variable Substitution

	TRANSMIT
	TYPE
	VCKP
	VDCL
	VDEL
	VDELL
	VDEQ
	VENQ
	VGET
	VGETL
	VLST
	VLSTL
	VPUT
	VPUTL
	WAIT
	WAITLIST
	WTO
	WTOR

	Chapter 13. Testing and Debugging EXECs Interactively
	Introduction
	Why Use AutoOPERATOR EXECs
	What AutoOPERATOR EXECs Are
	What the EXEC Testing Facility Provides

	Overview
	What Breakpoints Are
	Division of Breakpoints
	How to Use Variables
	Using the EXEC Testing Facility with OSPI EXECs
	How to Use the IMFEXEC BKPT Statement
	How to Trace the Execution of the EXEC
	What to Set Up Before Using the EXEC Testing Facility

	Accessing the EXEC Testing Facility
	Displaying Interpreted Source Statements
	Tracing Interpreted Source Statements
	Setting Conditional Breakpoints
	Displaying Variables
	Creating and Modifying Variables
	Testing OSPI Sessions

	Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs
	Distributed Utility EXECs
	SYSPROG Utility EXECs

	How to Resolve Compound SYSPROG Variables
	@STATASK: Start Tasks
	CANEXEC: Cancel Delvars
	DELVARS: Delete Variables
	MUT001C: Issue $E, $P, and $C Commands
	SUBMIT: Find Subsystem Handling Job Submissions
	SUBMITOR: Submit Jobs on the Target Subsystem
	RASM: Auxiliary Storage Manager Information
	RCPU: CPU Usage Information
	RCSS: Common Storage Usage Information
	RENQ: SYSPROG ENQUEUE Command
	RIO: System Input/Output Information
	RMDE: Device Monitoring
	RMON: Address Space Monitoring
	RMPA: Channel Path Monitoring
	RMTP: Monitor Pending Mounts
	RPAG: System Wide Paging Information
	RPRO: Monitor Progress of an Address Space
	RREP: Retrieve WTOR IDs
	RREPRX: Retrieve WTOR IDs
	RRES: Retrieve Outstanding Reserves
	RRSM: Real Storage Management Information
	RSPA: Retrieve DASD Space Information
	RSTA: Retrieve Status of an Address Space
	RSYS: System Dump Data Sets Information
	RTPI: Teleprocessing Input/Output Information
	RTSU: Information on TSO Users
	@TIMER: Interface to Timer Queues
	JES2DI: Retrieve Initiator Information
	JES2DQ: Retrieve Execution Queue Information
	CNVSECS: Convert HH:MM:SS Format to Seconds
	CNVTIME: Convert Time in Seconds to HH:MM:SS

	Appendix A. SYSPROG EXEC Cross-Reference
	Glossary
	Index

